1
|
Kapur NK, Kanwar MK, Yousefzai R, Bhimiraj A, Farber H, Esposito ML, Kiernan MS, John KJ, Burkhoff D. Mechanical Preload Reduction: Harnessing a Cornerstone of Heart Failure Management to Improve Clinical Outcomes. ASAIO J 2024; 70:821-831. [PMID: 38829983 PMCID: PMC11426983 DOI: 10.1097/mat.0000000000002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Decongestion is a cornerstone therapeutic goal for those presenting with decompensated heart failure. Current approaches to clinical decongestion include reducing cardiac preload, which is typically limited to diuretics and hemofiltration. Several new technologies designed to mechanically reduce cardiac preload are in development. In this review, we discuss the pathophysiology of decompensated heart failure; the central role of targeting cardiac preload; emerging mechanical preload reduction technologies; and potential application of these devices.
Collapse
Affiliation(s)
- Navin K. Kapur
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Manreet K. Kanwar
- Department of Cardiology, Cardiovascular Institute at Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Rayan Yousefzai
- Department of Cardiology, Houston Methodist Research Institute, Houston, Texas
| | - Arvind Bhimiraj
- Department of Cardiology, Houston Methodist Research Institute, Houston, Texas
| | - Harrison Farber
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Michele L. Esposito
- Department of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael S. Kiernan
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Kevin J. John
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Daniel Burkhoff
- Department of Cardiology, The Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
2
|
Chouairi F, Levin A, Biegus J, Fudim M. Emerging devices for heart failure management. Prog Cardiovasc Dis 2024; 82:125-134. [PMID: 38242194 DOI: 10.1016/j.pcad.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
There have been significant advances in the treatment of heart failure (HF) in recent years, driven by significant strides in guideline-directed medical therapy (GDMT). Despite this, HF is still associated with high levels of morbidity and mortality, and most patients do not receive optimal medical therapy. In conjunction with the improvement of GDMT, novel device therapies have been developed to better treat HF. These devices include technology capable of remotely monitoring HF physiology, devices that modulate the autonomic nervous system, and those that structurally change the heart with the ultimate aim of addressing the root causes of HF physiology As these device therapies gradually integrate into the fabric of HF patient care, it becomes increasingly important for modern cardiologists to become familiar with them. Hence, the objective of this review is to shed light on currently emerging devices for the treatment of HF.
Collapse
Affiliation(s)
- Fouad Chouairi
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Allison Levin
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marat Fudim
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
3
|
Khan MS, Paracha AA, Biegus J, Espriella RDL, Núñez J, Santos-Gallego CG, Yaranov D, Fudim M. Preload Reduction Therapies in Heart Failure. Heart Fail Clin 2024; 20:71-81. [PMID: 37953023 DOI: 10.1016/j.hfc.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Preload reserve represents an important concept in the normal physiologic responses of the body to meet the changing metabolic demands. The recruitment of preload in healthy patients leads to an increase in effective circulating blood volume with a concomitant increase in cardiac output. However, in the setting of heart failure (HF), preload augmentation may precipitate HF decompensation. In this review, we focus on the role of splanchnic nerve modulation and pharmacological therapeutic interventions to prevent HF decompensation through preload reduction. Furthermore, we explore the emerging device-based approaches for cardiac preload reduction while reviewing the ongoing clinical trials.
Collapse
Affiliation(s)
| | | | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Poland
| | - Rafael de la Espriella
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Carlos G Santos-Gallego
- Cardiology Department, Mount Sinai Hospital, NYC; Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NYC
| | | | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
4
|
Andersen L, Appelblad M, Wiklund U, Sundström N, Svenmarker S. Our initial experience of monitoring the autoregulation of cerebral blood flow during cardiopulmonary bypass. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:209-217. [PMID: 38099638 PMCID: PMC10723576 DOI: 10.1051/ject/2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cerebral blood flow (CBF) is believed to be relatively constant within an upper and lower blood pressure limit. Different methods are available to monitor CBF autoregulation during surgery. This study aims to critically analyze the application of the cerebral oxygenation index (COx), one of the commonly used techniques, using a reference to data from a series of clinical registrations. METHOD CBF was monitored using near-infrared spectroscopy, while cerebral blood pressure was estimated by recordings obtained from either the radial or femoral artery in 10 patients undergoing cardiopulmonary bypass. The association between CBF and blood pressure was calculated as a moving continuous correlation coefficient. A COx index > 0.4 was regarded as a sign of abnormal cerebral autoregulation (CA). Recordings were examined to discuss reliability measures and clinical feasibility of the measurements, followed by interpretation of individual results, identification of possible pitfalls, and suggestions of alternative methods. RESULTS AND CONCLUSION Monitoring of CA during cardiopulmonary bypass is intriguing and complex. A series of challenges and limitations should be considered before introducing this method into clinical practice.
Collapse
Affiliation(s)
- Leon Andersen
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Micael Appelblad
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Nina Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Staffan Svenmarker
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| |
Collapse
|
5
|
Haran C, Sivakumaran Y. Contemporary uses of inferior vena cava balloon occlusion. Ann Vasc Surg 2023:S0890-5096(23)00238-8. [PMID: 37121341 DOI: 10.1016/j.avsg.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The evolution of the hybrid operative environment has expanded the utility of inferior vena cava balloon occlusion (IVCBO) in contemporary surgical practice. First described in the management of acute decompensated heart failure and venous thromboembolism, IVCBO has been utilised in deployment of thoracic endoprosthesis, repair of aorto-caval fistula, management of inferior vena cava (IVC) tumour thrombus and abdominal IVC trauma. More recently, IVCBO has also been utilised as a therapeutic strategy to assist patients with reduced ejection fraction and exercise tolerance in the form of an implantable device. Here we present a narrative review of the physiological impact of IVCBO as well as its historical, contemporary and future uses. The contemporary utilisation of IVCBO is a novel example of employing endovascular technology in the hybrid operative environment; paramount for the modern vascular surgeon who is now increasingly involved in multi-disciplinary management of complex clinical presentations.
Collapse
Affiliation(s)
- Cheyaanthan Haran
- Department of Vascular Surgery, Auckland City Hospital, Auckland, New Zealand; Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Yogeesan Sivakumaran
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, Australia; Greater Brisbane Clinical School, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Tang R, Chang Y, Song J. Advances in novel devices for the treatment of heart failure. Heart Fail Rev 2023; 28:331-345. [PMID: 36792818 DOI: 10.1007/s10741-022-10293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/17/2023]
Abstract
Heart failure (HF) is one of the leading causes of global health impairment. Current drugs are still limited in their effectiveness in the treatment and reversal of HF: for example, drugs for acute HF (AHF) help to reduce congestion and relieve symptoms, but they do little to improve survival; most conventional drugs for HF with preserved ejection fraction (HFpEF) do not improve the prognosis; and drugs have extremely limited effects on advanced HF. In recent years, progress in device therapies has bridged this gap to a certain extent. For example, the availability of the left ventricular assist device has brought new options to numerous advanced HF patients. In addition to this recognizable device, a range of promising novel devices with preclinical or clinical trial results are emerging that seek to treat or reverse HF by providing circulatory support, repairing structural abnormalities in the heart, or providing electrical stimulation. These devices may be useful for the treatment of HF. In this review, we summarized recent advances in novel devices for AHF, HFpEF, and HF with reduced ejection fraction (HFrEF) with the aim of providing a reference for clinical treatment and inspiration for novel device development.
Collapse
Affiliation(s)
- Renjie Tang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Fudim M, Khan MS, Paracha AA, Sunagawa K, Burkhoff D. Targeting Preload in Heart Failure: Splanchnic Nerve Blockade and Beyond. Circ Heart Fail 2022; 15:e009340. [PMID: 35290092 PMCID: PMC8931843 DOI: 10.1161/circheartfailure.121.009340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preload augmentation represents a critical mechanism for the cardiovascular system to increase effective circulating blood volume to increase cardiac filling pressures and, subsequently, for the heart to increase cardiac output. The splanchnic vascular compartment is the primary source of vascular capacity and thus the primary target for preload recruitment in humans. Under normal conditions, sympathetic stimulation of these primary venous vessels promotes the shift of blood from the splanchnic to the thoracic compartment and elevates preload and cardiac output. However, in heart failure, since filling pressures may be elevated at rest due to decreased venous capacitance, incremental recruitment of preload to enhance cardiac output may exacerbate congestion and limit exercise capacity. Accordingly, recent attention has focused on therapies designed to regulate splanchnic vascular redistribution to improve cardiac filling pressures and patient-centered outcomes such as quality of life and exercise capacity in patients with heart failure. In this review, we discuss the relevance of splanchnic circulation as a venous reservoir, the contribution of stressed blood volume to heart failure pathogenesis, and the implications for pharmacological therapeutic interventions to prevent heart failure decompensation. Further, we review emerging device-based approaches for cardiac preload reduction such as partial/complete occlusion of the superior vena cava or the inferior vena cava.
Collapse
Affiliation(s)
- Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.F., M.S.K.).,Duke Clinical Research Institute, Durham, NC (M.F.)
| | - Muhammad Shahzeb Khan
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.F., M.S.K.)
| | | | - Kenji Sunagawa
- Circulatory System Research Foundation, Hongo, Tokyo, Japan (K.S.)
| | | |
Collapse
|
8
|
A Glimpse Into the Future of Transcatheter Interventional Heart Failure Therapies. JACC Basic Transl Sci 2022; 7:181-191. [PMID: 35257045 PMCID: PMC8897161 DOI: 10.1016/j.jacbts.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
HF affects millions of patients every year, adding a significant financial burden to global health care systems. This review discusses the role of novel transcatheter-based therapies for the management of HF. Ongoing clinical trials will provide answers on the potential clinical benefits of these technologies in HF outcomes.
Chronic heart failure is one of the most debilitating chronic conditions affecting millions of people and adding a significant financial burden to health care systems worldwide. Despite the significant therapeutic advances achieved over the last decade, morbidity and mortality remain high. Multiple catheter-based interventional therapies targeting different physiological and anatomical targets are already under different stages of clinical investigation. The present paper provides a technical overview of the most relevant catheter-based interventional therapies under clinical investigation.
Collapse
Key Words
- CI, confidence interval
- COVID-19, coronavirus disease 2019
- CS, coronary sinus
- CVP, central venous pressure
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HR, hazard ratio
- LA, left atrium/atrial
- LAP, left atrial pressure
- LV, left ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVESV, left ventricular end-systolic volume
- LVESVi, left ventricular end-systolic volume index
- NYHA, New York Heart Association
- PCWP, pulmonary capillary wedge pressure
- RA, right atrium/atrial
- RAP, right atrial pressure
- SVC, superior vena cava
- catheter-based therapies
- heart failure
- interventional heart failure
Collapse
|
9
|
Kapur NK, Kiernan MS, Gorgoshvili I, Yousefzai R, Vorovich EE, Tedford RJ, Sauer AJ, Abraham J, Resor CD, Kimmelstiel CD, Benzuly KH, Steinberg DH, Messer J, Burkhoff D, Karas RH. Intermittent Occlusion of the Superior Vena Cava to Improve Hemodynamics in Patients With Acutely Decompensated Heart Failure: The VENUS-HF Early Feasibility Study. Circ Heart Fail 2022; 15:e008934. [PMID: 35000420 DOI: 10.1161/circheartfailure.121.008934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Reducing congestion remains a primary target of therapy for acutely decompensated heart failure. The VENUS-HF EFS (VENUS-Heart Failure Early Feasibility Study) is the first clinical trial testing intermittent occlusion of the superior vena cava with the preCARDIA system, a catheter mounted balloon and pump console, to improve decongestion in acutely decompensated heart failure. METHODS In a multicenter, prospective, single-arm exploratory safety and feasibility trial, 30 patients with acutely decompensated heart failure were assigned to preCARDIA therapy for 12 or 24 hours. The primary safety outcome was a composite of major adverse cardiovascular and cerebrovascular events through 30 days. Secondary end points included technical success defined as successful preCARDIA placement, treatment, and removal and reduction in right atrial and pulmonary capillary wedge pressure. Other efficacy measures included urine output and patient-reported symptoms. RESULTS Thirty patients were enrolled and assigned to receive the preCARDIA system. Freedom from device- or procedure-related major adverse events was observed in 100% (n=30/30) of patients. The system was successfully placed, activated and removed after 12 (n=6) or 24 hours (n=23) in 97% (n=29/30) of patients. Compared with baseline values, right atrial pressure decreased by 34% (17±4 versus 11±5 mm Hg, P<0.001) and pulmonary capillary wedge pressure decreased by 27% (31±8 versus 22±9 mm Hg, P<0.001). Compared with pretreatment values, urine output and net fluid balance increased by 130% and 156%, respectively, with up to 24 hours of treatment (P<0.01). CONCLUSIONS We report the first-in-human experience of intermittent superior vena cava occlusion using the preCARDIA system to reduce congestion in acutely decompensated heart failure. PreCARDIA treatment for up to 24 hours was well tolerated without device- or procedure-related serious or major adverse events and associated with reduced filling pressures and increased urine output. These results support future studies characterizing the clinical utility of the preCARDIA system. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03836079.
Collapse
Affiliation(s)
- Navin K Kapur
- Tufts Medical Center, Boston, MA (N.K.K., M.S.K., C.D.R., C.D.K., R.H.K.)
| | - Michael S Kiernan
- Tufts Medical Center, Boston, MA (N.K.K., M.S.K., C.D.R., C.D.K., R.H.K.)
| | | | | | | | - Ryan J Tedford
- Medical University of South Carolina, Charleston (R.J.T., D.H.S.)
| | | | | | - Charles D Resor
- Tufts Medical Center, Boston, MA (N.K.K., M.S.K., C.D.R., C.D.K., R.H.K.)
| | | | - Keith H Benzuly
- Northwestern Memorial Hospital, Chicago, IL (E.E.V., K.H.B.)
| | | | | | - Daniel Burkhoff
- Cardiovascular Research Foundation, West Harrison, NY (D.B.)
| | - Richard H Karas
- Tufts Medical Center, Boston, MA (N.K.K., M.S.K., C.D.R., C.D.K., R.H.K.)
| |
Collapse
|
10
|
Atkins J, Fudim M, Tedford RJ. Turning Pressure Into Success: Preload Restriction in HFpEF? JACC Basic Transl Sci 2021; 6:199-201. [PMID: 33779658 PMCID: PMC7987539 DOI: 10.1016/j.jacbts.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica Atkins
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Kaiser DW, Platzer P, Miyashiro K, Canfield J, Patel R, Liu D, St. Goar F, Kaiser CA. First-in-Human Experience of Mechanical Preload Control in Patients With HFpEF During Exercise. JACC Basic Transl Sci 2021; 6:189-198. [PMID: 33778208 PMCID: PMC7987536 DOI: 10.1016/j.jacbts.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Heart failure patients demonstrate pulmonary hypertension during exertion that correlates with limitations in exercise capacity. Titrated partial occlusion of the IVC through balloon inflation (mechanical preload control) during exercise significantly reduced PA pressure by 25% (from 68 ± 7 mm Hg to 51 ± 7 mm Hg) with no significant reduction in peak VO2 (from 16.4 ± 5.8 ml/kg/min to 16.2 ± 4.0 ml/kg/min) or cardiac output (14.4 ± 5.9 l/min to 12.8 ± 2.9 l/min). Mechanical preload control trended toward longer exercise times and significantly reduced respiratory rate at matched exercise, suggesting that pulmonary pressures directly contribute to exercise limitations and hyperventilation in heart failure patients. Mechanical preload control may serve as a novel research and treatment strategy for heart failure patients.
Exercise intolerance remains one of the major factors determining quality of life in heart failure patients. In 6 patients with heart failure with preserved ejection fraction (HFpEF) undergoing invasive cardiopulmonary exercise testing, balloon inflation within the inferior vena cava (IVC) was performed during exercise to reduce and maintain pulmonary arterial (PA) pressures. Partial IVC occlusion significantly reduced PA pressures without reducing cardiac output. Partial IVC occlusion significantly reduced respiratory rate at matched levels of exercise. These findings highlight the importance of pulmonary pressures in the pathophysiology of HFpEF and suggest that therapies targeting hemodynamics may improve symptoms and exercise capacity in these patients.
Collapse
Affiliation(s)
- Daniel W. Kaiser
- Department of Respiratory Therapy, El Camino Hospital, Mountain View, California
- Department of Cardiovascular Medicine, Saint Thomas Hospital, Nashville, Tennessee, USA
- CardioFlow Technologies, Nashville, Tennessee, USA
- Address for correspondence: Dr. Daniel W Kaiser, Saint Thomas Hospital, 301 21st Avenue, N #100, Nashville, Tennessee 37203, USA.
| | - Patrick Platzer
- Department of Cardiovascular Medicine, Saint Thomas Hospital, Nashville, Tennessee, USA
| | | | - James Canfield
- Department of Respiratory Therapy, El Camino Hospital, Mountain View, California
| | - Rupal Patel
- Department of Respiratory Therapy, El Camino Hospital, Mountain View, California
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Frederick St. Goar
- Department of Respiratory Therapy, El Camino Hospital, Mountain View, California
| | - Clayton A. Kaiser
- Department of Cardiovascular Medicine, Saint Thomas Hospital, Nashville, Tennessee, USA
- CardioFlow Technologies, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Kapur NK, Esposito ML, Whitehead E. Aortix™: a novel intra-aortic entrainment pump. Future Cardiol 2020; 17:283-291. [PMID: 33353421 DOI: 10.2217/fca-2020-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Use of short-term mechanical circulatory support pumps for cardiogenic shock, decompensated heart failure and high-risk coronary intervention is growing. The Aortix™ device (Procyrion, TX, USA) is the first axial-flow pump positioned in the aorta and is designed to provide short-term hemodynamic support. This review discusses the field of continuous flow aortic pumps and focuses specifically on emerging preclinical and clinical data supporting the development of these technologies.
Collapse
Affiliation(s)
- Navin K Kapur
- The Cardiovascular Center, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Michele L Esposito
- The Cardiovascular Center, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Evan Whitehead
- The Cardiovascular Center, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|