1
|
Su J, Wang H, Haney C, Ameer G, Jiang B. Enabling Non-invasive Tracking of Vascular Endothelial Cells Derived from Induced Pluripotent Stem Cells Using Nuclear Imaging. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00729-y. [PMID: 38653931 DOI: 10.1007/s13239-024-00729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The absence of clinically applicable imaging techniques for continuous monitoring of transplanted cells poses a significant obstacle to the clinical translation of stem cell-based therapies for vascular regeneration. This study aims to optimize a clinically applicable, non-invasive imaging technique to longitudinally monitor vascular endothelial cells (ECs) for vascular regeneration in peripheral artery disease (PAD). METHODS Human induced pluripotent stem cells (HiPSCs) were employed to generate ECs (HiPSC-ECs). Lentiviral vectors encoding human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (eGFP) genes were introduced to HiPSCs and HiPSC-ECs at varying multiplicities of infection (MOI). Through a combination of fluorescence microscopy and flow cytometry, an optimized transduction technique for introducing hNIS-eGFP into HiPSC-ECs was established. Subsequently, single-photon emission computed tomography (SPECT) was utilized for imaging of the transduced cells in vitro and in vivo after transplantation into the gastrocnemius muscle of nude mice. RESULTS Lentiviral transduction resulted in sustained co-expression of hNIS and eGFP in HiPSC-ECs when transduced post-endothelial differentiation. An optimal MOI of five yielded over 90% hNIS-eGFP expression efficiency without compromising cell viability. hNIS-eGFP+ HiPSC-ECs exhibited 99mTc uptake and were detectable through SPECT in vitro. Additionally, intramuscular injection of hNIS-eGFP+ HiPSC-ECs with MatrigelTM into the hindlimbs of nude mice enabled real-time SPECT/CT tracking, from which a reduction in signal exceeding 80% was observed within 7 days. CONCLUSIONS This study establishes an optimized cell modification and imaging protocol for tracking transplanted cells. Future efforts will focus on enhancing cell survival and integration via improved delivery systems, thereby advancing the potential of cell-based therapies for PAD.
Collapse
Affiliation(s)
- Jimmy Su
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Huifeng Wang
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Haney
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Molecular Imaging, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Guillermo Ameer
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
| | - Bin Jiang
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
De Chiara F, Ferret-Miñana A, Fernández-Costa JM, Ramón-Azcón J. The Tissue Engineering Revolution: From Bench Research to Clinical Reality. Biomedicines 2024; 12:453. [PMID: 38398055 PMCID: PMC10886508 DOI: 10.3390/biomedicines12020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
At its core, tissue engineering involves the use of a scaffold for the formation of new viable tissue for medical purposes [...].
Collapse
Affiliation(s)
- Francesco De Chiara
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | | | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain;
| |
Collapse
|
3
|
Zakharova IS, Shevchenko AI, Arssan MA, Sleptcov AA, Nazarenko MS, Zarubin AA, Zheltysheva NV, Shevchenko VA, Tmoyan NA, Saaya SB, Ezhov MV, Kukharchuk VV, Parfyonova YV, Zakian SM. iPSC-Derived Endothelial Cells Reveal LDLR Dysfunction and Dysregulated Gene Expression Profiles in Familial Hypercholesterolemia. Int J Mol Sci 2024; 25:689. [PMID: 38255763 PMCID: PMC10815294 DOI: 10.3390/ijms25020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.
Collapse
Affiliation(s)
- Irina S. Zakharova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Alexander I. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Mhd Amin Arssan
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Nina V. Zheltysheva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Vlada A. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Narek A. Tmoyan
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Shoraan B. Saaya
- E.N. Meshalkin National Medical Research Centre, Ministry of Health Care of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Marat V. Ezhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Valery V. Kukharchuk
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Yelena V. Parfyonova
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| |
Collapse
|