1
|
Lee DW, Kim E, Jeong I, Kim HK, Kim S, Park HC. Schwann cells selectively myelinate primary motor axons via neuregulin-ErbB signaling. Glia 2020; 68:2585-2600. [PMID: 32589818 DOI: 10.1002/glia.23871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/06/2022]
Abstract
Spinal motor neurons project their axons out of the spinal cord via the motor exit point (MEP) and regulate their target muscle fibers for diverse behaviors. Several populations of glial cells including Schwann cells, MEP glia, and perineurial glia are tightly associated with spinal motor axons in nerve fascicles. Zebrafish have two types of spinal motor neurons, primary motor neurons (PMNs) and secondary motor neurons (SMNs). PMNs are implicated in the rapid response, whereas SMNs are implicated in normal and slow movements. However, the precise mechanisms mediating the distinct functions of PMNs and SMNs in zebrafish are unclear. In this study, we found that PMNs were myelinated by MEP glia and Schwann cells, whereas SMNs remained unmyelinated at the examined stages. Immunohistochemical analysis revealed that myelinated PMNs solely innervated fast muscle through a distributed neuromuscular junction (NMJ), whereas unmyelinated SMNs innervated both fast and slow muscle through distributed and myoseptal NMJs, respectively, indicating that myelinated PMNs could provide rapid responses for startle and escape movements, while unmyelinated SMNs regulated normal, slow movement. Further, we demonstrate that neuregulin 1 (Nrg1) type III-ErbB signaling provides a key instructive signal that determines the myelination of primary motor axons by MEP glia and Schwann cells. Perineurial glia ensheathed unmyelinated secondary motor axons and myelinated primary motor nerves. Ensheathment required interaction with both MEP glia and Schwann cells. Collectively, these data suggest that primary and secondary motor neurons contribute to the regulation of movement in zebrafish with distinct patterns of myelination.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
2
|
Saro G, Lia AS, Thapliyal S, Marques F, Busch KE, Glauser DA. Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. Cell Rep 2020; 30:397-408.e4. [DOI: 10.1016/j.celrep.2019.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
3
|
Langlois V, Bedat Millet AL, Lebesnerais M, Miranda S, Marguet F, Benhamou Y, Marcorelles P, Lévesque H. [Small fiber neuropathy]. Rev Med Interne 2017; 39:99-106. [PMID: 28410768 DOI: 10.1016/j.revmed.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Small fiber neuropathy (SFN) is still unknown. Characterised by neuropathic pain, it typically begins by burning feet, but could take many other expression. SFN affects the thinly myelinated Aδ and unmyelinated C-fibers, by an inherited or acquired mechanism, which could lead to paresthesia, thermoalgic disorder or autonomic dysfunction. Recent studies suggest the preponderant role of ion channels such as Nav1.7. Furthermore, erythromelalgia or burning mouth syndrome are now recognized as real SFN. Various aetiologies of SFN are described. It could be isolated or associated with diabetes, impaired glucose metabolism, vitamin deficiency, alcohol, auto-immune disease, sarcoidosis etc. Several mutations have recently been identified, like Nav1.7 channel leading to channelopathies. Diagnostic management is based primarily on clinical examination and demonstration of small fiber dysfunction. Laser evoked potentials, Sudoscan®, cutaneous biopsy are the main test, but had a difficult access. Treatment is based on multidisciplinary management, combining symptomatic treatment, psychological management and treatment of an associated etiology.
Collapse
Affiliation(s)
- V Langlois
- Service de médecine interne et maladies infectieuses, CH Le Havre, 29, avenue Pierre-Mendès, 76290 Montivilliers, France; U1096, service de médecine interne, Normandie univ, UNIROUEN, 76000 Rouen, France.
| | - A-L Bedat Millet
- Département de neurophysiologie, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France
| | - M Lebesnerais
- U1096, service de médecine interne, Normandie univ, UNIROUEN, 76000 Rouen, France
| | - S Miranda
- U1096, service de médecine interne, Normandie univ, UNIROUEN, 76000 Rouen, France
| | - F Marguet
- Département d'anatomie et cytologie pathologiques, CHU de Rouen, 1, rue de Germont, 76031 Rouen, France
| | - Y Benhamou
- U1096, service de médecine interne, Normandie univ, UNIROUEN, 76000 Rouen, France
| | - P Marcorelles
- Département d'anatomie et cytologie pathologiques, hôpital Morvan, centre hospitalier régional et universitaire de Brest, 2, avenue Foch, 29609 Brest cedex, France
| | - H Lévesque
- U1096, service de médecine interne, Normandie univ, UNIROUEN, 76000 Rouen, France
| |
Collapse
|
4
|
Aboualizadeh E, Mattson EC, O'Hara CL, Smith AK, Stucky CL, Hirschmugl CJ. Cold shock induces apoptosis of dorsal root ganglion neurons plated on infrared windows. Analyst 2015; 140:4046-56. [PMID: 26000346 PMCID: PMC4536072 DOI: 10.1039/c5an00729a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical status of live sensory neurons is accessible with infrared microspectroscopy of appropriately prepared cells. In this paper, individual dorsal root ganglion (DRG) neurons have been prepared with two different protocols, and plated on glass cover slips, BaF2 and CaF2 substrates. The first protocol exposes the intact DRGs to 4 °C for between 20-30 minutes before dissociating individual neurons and plating 2 hours later. The second protocol maintains the neurons at 23 °C for the entire duration of the sample preparation. The visual appearance of the neurons is similar. The viability was assessed by means of trypan blue exclusion method to determine the viability of the neurons. The neurons prepared under the first protocol (cold exposure) and plated on BaF2 reveal a distinct chemical signature and chemical distribution that is different from the other sample preparations described in the paper. Importantly, results for other sample preparation methods, using various substrates and temperature protocols, when compared across the overlapping spectral bandwidth, present normal chemical distribution within the neurons. The unusual chemically specific spatial variation is dominated by a lack of protein and carbohydrates in the center of the neurons and signatures of unraveling DNA are detected. We suggest that cold shock leads to apoptosis of DRGs, followed by osmotic stress originating from ion gradients across the cell membrane leading to cell lysis.
Collapse
Affiliation(s)
- Ebrahim Aboualizadeh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211 USA.
| | | | | | | | | | | |
Collapse
|
5
|
Barabas ME, Mattson EC, Aboualizadeh E, Hirschmugl CJ, Stucky CL. Chemical structure and morphology of dorsal root ganglion neurons from naive and inflamed mice. J Biol Chem 2014; 289:34241-9. [PMID: 25271163 DOI: 10.1074/jbc.m114.570101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fourier transform infrared spectromicroscopy provides label-free imaging to detect the spatial distribution of the characteristic functional groups in proteins, lipids, phosphates, and carbohydrates simultaneously in individual DRG neurons. We have identified ring-shaped distributions of lipid and/or carbohydrate enrichment in subpopulations of neurons which has never before been reported. These distributions are ring-shaped within the cytoplasm and are likely representative of the endoplasmic reticulum. The prevalence of chemical ring subtypes differs between large- and small-diameter neurons. Peripheral inflammation increased the relative lipid content specifically in small-diameter neurons, many of which are nociceptive. Because many small-diameter neurons express an ion channel involved in inflammatory pain, transient receptor potential ankyrin 1 (TRPA1), we asked whether this increase in lipid content occurs in TRPA1-deficient (knock-out) neurons. No statistically significant change in lipid content occurred in TRPA1-deficient neurons, indicating that the inflammation-mediated increase in lipid content is largely dependent on TRPA1. Because TRPA1 is known to mediate mechanical and cold sensitization that accompanies peripheral inflammation, our findings may have important implications for a potential role of lipids in inflammatory pain.
Collapse
Affiliation(s)
- Marie E Barabas
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| | - Eric C Mattson
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Ebrahim Aboualizadeh
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Carol J Hirschmugl
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Cheryl L Stucky
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| |
Collapse
|
6
|
Nascimento DSM, Castro-Lopes JM, Neto FLM. Satellite glial cells surrounding primary afferent neurons are activated and proliferate during monoarthritis in rats: is there a role for ATF3? PLoS One 2014; 9:e108152. [PMID: 25247596 PMCID: PMC4172763 DOI: 10.1371/journal.pone.0108152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Joint inflammatory diseases are debilitating and very painful conditions that still lack effective treatments. Recently, glial cells were shown to be crucial for the development and maintenance of chronic pain, constituting novel targets for therapeutic approaches. At the periphery, the satellite glial cells (SGCs) that surround the cell bodies of primary afferents neurons in the dorsal root ganglia (DRG) display hypertrophy, proliferation, and activation following injury and/or inflammation. It has been suggested that the expression of neuronal injury factors might initially trigger these SGCs-related events. We then aimed at evaluating if SGCs are involved in the establishment/maintenance of articular inflammatory pain, by using the monoarthritis (MA) model, and if the neuronal injury marker activating transcriptional factor 3 (ATF3) is associated with these SGCs' reactive changes. Western Blot (WB) analysis of the glial fibrillary acidic protein (GFAP) expression was performed in L4-L5 DRGs from control non-inflamed rats and MA animals at different time-points of disease (4, 7, and 14d, induced by complete Freund's adjuvant injection into the left hind paw ankle joint). Data indicate that SGCs activation is occurring in MA animals, particularly after day 7 of disease evolution. Additionally, double-immunostaining for ATF3 and GFAP in L5 DRG sections shows that SGCs's activation significantly increases around stressed neurons at 7d of disease, when compared with control animals. The specific labelling of GFAP in SGCs rather than in other cell types was also confirmed by immunohistochemical labeling. Finally, BrdU incorporation indicates that proliferation of SGCs is also significantly increased after 7 days of MA. Data indicate that SGCs play an important role in the mechanisms of articular inflammation, with 7 days of disease being a critical time-point in the MA model, and suggest that ATF3 might be involved in SGCs' reactive changes such as activation.
Collapse
Affiliation(s)
- Diana Sofia Marques Nascimento
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - José Manuel Castro-Lopes
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Fani Lourença Moreira Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- * E-mail:
| |
Collapse
|
7
|
Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun 2014; 5:4122. [PMID: 24947823 PMCID: PMC4072246 DOI: 10.1038/ncomms5122] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
In primates, C-fibre polymodal nociceptors are broadly classified into two groups based on mechanosensitivity. Here we demonstrate that mechanically sensitive polymodal nociceptors that respond either quickly (QC) or slowly (SC) to a heat stimulus differ in responses to a mild burn, heat sensitization, conductive properties and chemosensitivity. Superficially applied capsaicin and intradermal injection of β-alanine, an MrgprD agonist, excite vigorously all QCs. Only 40% of SCs respond to β-alanine, and their response is only half that of QCs. Mechanically insensitive C-fibres (C-MIAs) are β-alanine insensitive but vigorously respond to capsaicin and histamine with distinct discharge patterns. Calcium imaging reveals that β-alanine and histamine activate distinct populations of capsaicin-responsive neurons in primate dorsal root ganglion. We suggest that histamine itch and capsaicin pain are peripherally encoded in C-MIAs, and that primate polymodal nociceptive afferents form three functionally distinct subpopulations with β-alanine responsive QC fibres likely corresponding to murine MrgprD-expressing, non-peptidergic nociceptive afferents.
Collapse
|
8
|
Gorokhova S, Gaillard S, Urien L, Malapert P, Legha W, Baronian G, Desvignes JP, Alonso S, Moqrich A. Uncoupling of molecular maturation from peripheral target innervation in nociceptors expressing a chimeric TrkA/TrkC receptor. PLoS Genet 2014; 10:e1004081. [PMID: 24516396 PMCID: PMC3916231 DOI: 10.1371/journal.pgen.1004081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Neurotrophins and their receptors control a number of cellular processes, such as survival, gene expression and axonal growth, by activating multiple signalling pathways in peripheral neurons. Whether each of these pathways controls a distinct developmental process remains unknown. Here we describe a novel knock-in mouse model expressing a chimeric TrkA/TrkC (TrkAC) receptor from TrkA locus. In these mice, prospective nociceptors survived, segregated into appropriate peptidergic and nonpeptidergic subsets, projected normally to distinct laminae of the dorsal spinal cord, but displayed aberrant peripheral target innervation. This study provides the first in vivo evidence that intracellular parts of different Trk receptors are interchangeable to promote survival and maturation of nociceptors and shows that these developmental processes can be uncoupled from peripheral target innervation. Moreover, adult homozygous TrkAC knock-in mice displayed severe deficits in acute and tissue injury-induced pain, representing the first viable adult Trk mouse mutant with a pain phenotype. Sensory neurons located in dorsal root ganglia are critical for perception of various stimuli by transmitting information from their peripheral targets to the spinal cord. During embryonic development, distinct populations of sensory neurons are defined based on expression of neurotrophin receptors Trks. Pain and temperature sensing neurons, or nociceptors, express NGF receptor TrkA, which control a number of diverse developmental processes, such as survival, gene expression and skin innervation. How these distinct processes are regulated by activation of same Trk receptor is currently unknown. Using a knock in approach, we generated a mouse with nociceptive neurons expressing a modified TrkA/TrkC receptor, which responds to NGF but signals through the intracellular part of another neurotrophin receptor, TrkC. Contrary to all previously reported NGF and TrkA mutants, these mice were viable and exhibited no obvious defects. Surprisingly, nociceptive neurons from these mice survived and matured normally, but failed to correctly innervate their peripheral target, skin. Thus, the intracellular parts of highly related receptors TrkA and TrkC are interchangeable for support of certain developmental processes but not others. Moreover, adult TrkA/TrkC mice exhibited drastic defects in pain sensation, making it an excellent model to study the role of NGF in nociception.
Collapse
Affiliation(s)
- Svetlana Gorokhova
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Stéphane Gaillard
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Louise Urien
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Wassim Legha
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Grégory Baronian
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Jean-Pierre Desvignes
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Serge Alonso
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
9
|
Moqrich A. Peripheral Pain-Sensing Neurons: from Molecular Diversity to Functional Specialization. Cell Rep 2014; 6:245-6. [DOI: 10.1016/j.celrep.2014.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Liu Q, Lee E, Davis RL. Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 2013; 257:96-110. [PMID: 24200924 DOI: 10.1016/j.neuroscience.2013.10.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/02/2013] [Accepted: 10/26/2013] [Indexed: 02/03/2023]
Abstract
The spiral ganglion conveys afferent auditory information predominantly through a single class of type I neurons that receive signals from inner hair cell sensory receptors. These auditory primary afferents, like in other systems (Puopolo and Belluzzi, 1998; Gascon and Moqrich, 2010; Leao et al., 2012) possess a marked diversity in their electrophysiological features (Taberner and Liberman, 2005). Consistent with these observations, when the auditory primary afferents were assessed in neuronal explants separated from their peripheral and central targets it was found that individual neurons were markedly heterogeneous in their endogenous electrophysiological features. One aspect of this heterogeneity, obvious throughout the ganglion, was their wide range of excitability as assessed by voltage threshold measurements (Liu and Davis, 2007). Thus, while neurons in the base differed significantly from apical and middle neurons in their voltage thresholds, each region showed distinctly wide ranges of values. To determine whether the resting membrane potentials (RMPs) of these neurons correlate with the threshold distribution and to identify the ion channel regulatory elements underlying heterogeneous neuronal excitability in the ganglion, patch-clamp recordings were made from postnatal day (P5-8) murine spiral ganglion neurons in vitro. We found that RMP mirrored the tonotopic threshold distribution, and contributed an additional level of heterogeneity in each cochlear location. Pharmacological experiments further indicated that threshold and RMP was coupled through the Kv1 current, which had a dual impact on both electrophysiological parameters. Whereas, hyperpolarization-activated cationic channels decoupled these two processes by primarily affecting RMP without altering threshold level. Thus, beyond mechanical and synaptic specializations, ion channel regulation of intrinsic membrane properties imbues spiral ganglion neurons with different excitability levels, a feature that contributes to primary auditory afferent diversity.
Collapse
Affiliation(s)
- Q Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - E Lee
- Rutgers University, New Jersey Medical School, Newark, NJ 07746, USA
| | - R L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 2012; 35:373-81. [PMID: 22516617 DOI: 10.1016/j.tins.2012.03.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/16/2022]
Abstract
Sensory neurons of the dorsal root ganglion (DRG) respond to many different kinds of stimulus. The ability to discriminate between the diverse types of sensation is reflected by the existence of functionally and morphologically specialized sensory neurons. This neuronal diversity is created in a step-wise process extending well into postnatal life. Here, we review the hierarchical organization and the molecular process involving interactions between environmental growth factors, used and reused in different developmental contexts in self-reinforcing and cross-inhibitory mechanisms, and intrinsic gene programs that underlie the progressive diversification of sensory progenitors into specialized neurons. The recent advance in knowledge of sensory neuron specification may provide mechanistic principles that could extend to other parts of the nervous system.
Collapse
|
12
|
|