1
|
Ramezani R, Mohammadian M, Hosseini ES, Zare M. The effect of bovine milk lactoferrin-loaded exosomes (exoLF) on human MDA-MB-231 breast cancer cell line. BMC Complement Med Ther 2023; 23:228. [PMID: 37422619 DOI: 10.1186/s12906-023-04045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/18/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Cancer is still the most challenging disease and is responsible for many deaths worldwide. Considerable research now focuses on targeted therapy in cancer using natural components to improve anti-tumor efficacy and reduce unfavorable effects. Lactoferrin is an iron-binding glycoprotein found in body fluids. Increasing evidence suggests that lactoferrin is a safe agent capable of inducing anti-cancer effects. Therefore, we conducted a study to evaluate the effects of the exosomal form of bovine milk lactoferrin on a human MDA-MB-231 breast cancer cell line. METHODS The exosomes were isolated from cancer cells by ultracentrifugation and incorporated with bovine milk lactoferrin through the incubation method. The average size of the purified exosome was determined using SEM imaging and DLS analysis. The maximum percentage of lactoferrin-loaded exosomes (exoLF) was achieved by incubating 1 mg/ml of lactoferrin with 30 µg/ml of MDA-MB-231 cells-derived exosomes. Following treatment of MDA-MB-231 cancer cells and normal cells with 1 mg/ml exoLF MTT assay applied to evaluate the cytotoxicity, PI/ annexin V analysis was carried out to illustrate the apoptotic phenotype, and the real-time PCR was performed to assess the pro-apoptotic protein, Bid, and anti-apoptotic protein, Bcl-2. RESULTS The average size of the purified exosome was about 100 nm. The maximum lactoferrin loading efficiency of exoLF was 29.72%. MTT assay showed that although the 1 mg/ml exoLF treatment of MDA-MB-231 cancer cells induced 50% cell growth inhibition, normal mesenchymal stem cells remained viable. PI/ annexin V analysis revealed that 34% of cancer cells had late apoptotic phenotype after treatment. The real-time PCR showed an elevated expression of pro-apoptotic protein Bid and diminished anti-apoptotic protein Bcl-2 following exoLF treatment. CONCLUSION These results suggested that exoLF could induce selective cytotoxicity against cancer cells compared to normal cells. Incorporating lactoferrin into the exosome seems an effective agent for cancer therapy. However, further studies are required to evaluate anti-tumor efficacy and the underlying mechanism of exoLF in various cancer cell lines and animal models.
Collapse
Affiliation(s)
- Reihaneh Ramezani
- Department of Family Therapy, Women Research Center, Alzahra University, Tehran, Iran.
| | - Mozhdeh Mohammadian
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Sadat Hosseini
- Department of Genetics, Faculty of Life Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
3
|
Rahman R, Fonseka AD, Sua S, Ahmad M, Rajendran R, Ambu S, Davamani F, Khoo AS, Chitra E. Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide. J Cell Mol Med 2021; 25:7181-7189. [PMID: 34236134 PMCID: PMC8335703 DOI: 10.1111/jcmm.16748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer has a diverse aetiology characterized by the heterogeneous expression of hormone receptors and signalling molecules, resulting in varied sensitivity to chemotherapy. The adverse side effects of chemotherapy coupled with the development of drug resistance have prompted the exploration of natural products to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its inhibitory effects on cell lines representing different categories of breast cancer and in vivo for its suppressive effects on tumour xenografts in NOD-SCID mice. The different breast cancer cell lines exhibited varied levels of sensitivity to apoptosis induced by LfcinB in the order of SKBR3>MDA-MB-231>MDA-MB-468>MCF7, while the normal breast epithelial cells MCF-10A were not sensitive to LfcinB. The peptide also inhibited the invasion of the MDA-MB-231 and MDA-MB-468 cell lines. In the mouse xenograft model, intratumoural injections of LfcinB significantly reduced tumour growth rate and tumour size, as depicted by live imaging of the mice using in vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that can be considered for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rizdwan Rahman
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | | | - Shiang‐Chia Sua
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Munirah Ahmad
- Molecular Pathology UnitCancer Research CentreInstitute for Medical ResearchNational Institutes of HealthMinistry of Health MalaysiaShah Alam, SelangorMalaysia
| | | | - Stephen Ambu
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Fabian Davamani
- School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| | - Alan Soo‐Beng Khoo
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
- Molecular Pathology UnitCancer Research CentreInstitute for Medical ResearchNational Institutes of HealthMinistry of Health MalaysiaShah Alam, SelangorMalaysia
- Institute for ResearchDevelopment and InnovationInternational Medical UniversityKuala LumpurMalaysia
| | - Ebenezer Chitra
- School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
4
|
Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol Res 2021; 171:105777. [PMID: 34298112 DOI: 10.1016/j.phrs.2021.105777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
Breast cancer is the most common and deadliest cancer in women worldwide. Although notable advances have been achieved in the treatment of breast cancer, the overall survival rate of metastatic breast cancer patients is still considerably low due to the development of resistance to breast cancer chemotherapeutic agents and the non-optimal specificity of the current generation of cancer medications. Hence, there is a growing interest in the search for alternative therapeutics with novel anticancer mechanisms. Recently, antimicrobial peptides (AMPs) have gained much attention due to their cost-effectiveness, high specificity of action, and robust efficacy. However, there are no clinical data available about their efficacy. This warrants the increasing need for clinical trials to be conducted to assess the efficacy of this new class of drugs. Here, we will focus on the recent progress in the use of AMPs for breast cancer therapy and will highlight their modes of action. Finally, we will discuss the combination of AMP-based therapeutics with other breast cancer therapy strategies, including nanotherapy and chemotherapy, which may provide a potential avenue for overcoming drug resistance.
Collapse
|
5
|
Nakamura-Bencomo S, Gutierrez DA, Robles-Escajeda E, Iglesias-Figueroa B, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Arévalo-Gallegos S, Aguilera RJ, Rascón-Cruz Q, Varela-Ramirez A. Recombinant human lactoferrin carrying humanized glycosylation exhibits antileukemia selective cytotoxicity, microfilament disruption, cell cycle arrest, and apoptosis activities. Invest New Drugs 2021; 39:400-415. [PMID: 33063290 PMCID: PMC8939434 DOI: 10.1007/s10637-020-01020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.
Collapse
Affiliation(s)
- Sayuri Nakamura-Bencomo
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Denisse A Gutierrez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Elisa Robles-Escajeda
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Blanca Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Tania S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Edward A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Renato J Aguilera
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México.
| | - Armando Varela-Ramirez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| |
Collapse
|
6
|
A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202:111694. [PMID: 33740633 DOI: 10.1016/j.colsurfb.2021.111694] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Despite the active research towards introducing novel anticancer agents, the long-term sequelae and side effects of chemotherapy remain the major obstacle to achieving clinical success. Recent cancer research is now utilizing the medicinal chemistry toolbox to tailor novel 'smart' carrier systems that can reduce the major limitations of chemotherapy ranging from non-specificity and ubiquitous biodistribution to systemic toxicity. In this aspect, various stimuli-responsive polymers have gained considerable interest due to their intrinsic tumor targeting properties. Among these polymers, poly(N-isopropylacrylamide (PNIPAM) has been chemically modified to tune its thermoresponsivity or even copolymerized to endow new stimulus responsiveness for enhancing tumor targeting. Herein, we set our design rationale to impart additional active targeting entity to pH/temperature-responsive PNIPAM-based polymer for more efficient controlled payloads accumulation at the tumor through cellular internalization via synthesizing novel "super intelligent" lactoferrin conjugated PNIPAM-acrylic acid (LF-PNIPAM-co-AA) copolymer. The synthesized copolymer was physicochemically characterized and evaluated as a smart nanocarrier for targeting breast cancer. In this regard, Honokiol (HK) was utilized as a model anticancer drug and encapsulated in the nanoparticles to overcome its lipophilic nature and allow its parenteral administration, for achieving sustainable drug release with targeting action. Results showed that the developed HK-loaded LF-PNIPAM-co-AA nanohydrogels displayed high drug loading capacity reaching to 18.65 wt.% with excellent physical and serum stability. Moreover, the prepared HK-loaded nanohydrogels exhibited efficient in vitro and in vivo antitumor activities. In vivo, HK-loaded nanohydrogels demonstrated suppression of VEGF-1 and Ki-67 expression levels, besides inducing apoptosis through upregulating the expression level of active caspase-3 in breast cancer-bearing mice. Overall, the developed nanohydrogels (NGs) with pH and temperature responsivity provide a promising nanocarrier for anticancer treatment.
Collapse
|
7
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:biom10030456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| |
Collapse
|
8
|
Li HY, Li P, Yang HG, Wang YZ, Huang GX, Wang JQ, Zheng N. Investigation and comparison of the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin in A549, HT29, HepG2, and MDA231-LM2 tumor models. J Dairy Sci 2019; 102:9586-9597. [PMID: 31447140 DOI: 10.3168/jds.2019-16429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/23/2019] [Indexed: 12/27/2022]
Abstract
To investigate the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin, 4 types of human tumor cells (lung tumor cell A549, intestinal epithelial tumor cell HT29, hepatocellular cell HepG2, and breast cancer cell MDA231-LM2) were exposed to 3 proteins, respectively. The effects on cell proliferation, migration, and apoptosis were detected in vitro, and nude mice bearing tumors were administered the 3 proteins in vivo. Results showed that the 3 proteins (20 g/L) inhibited viability and migration, as well as induced apoptosis, in 4 tumor cells to different degrees (compared with the control). In vivo, tumor weights in the HT29 group (0.84 ± 0.22 g vs. control 2.05 ± 0.49 g) and MDA231-LM2 group (1.11 ± 0.25 g vs. control 2.49 ± 0.57 g) were significantly reduced by lactoferrin; tumor weights in the A549 group (1.07 ± 0.19 g vs. control 3.11 ± 0.73 g) and HepG2 group (2.32 ± 0.46 g vs. control 3.50 ± 0.74 g) were significantly reduced by α-lactalbumin. Moreover, the roles of lactoferrin, α-lactalbumin, and β-lactoglobulin in regulating apoptotic proteins were validated. In summary, lactoferrin, α-lactalbumin, and β-lactoglobulin were proven to inhibit growth and development of A549, HT29, HepG2, and MDA231-LM2 tumors to different degrees via induction of cell apoptosis.
Collapse
Affiliation(s)
- H Y Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - P Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - H G Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Y Z Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - G X Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - J Q Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - N Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
9
|
Sharifi M, Rezayat SM, Akhtari K, Hasan A, Falahati M. Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. J Biomol Struct Dyn 2019; 38:2945-2954. [DOI: 10.1080/07391102.2019.1650114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Pereira CS, Guedes JP, Gonçalves M, Loureiro L, Castro L, Gerós H, Rodrigues LR, Côrte-Real M. Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget 2018; 7:62144-62158. [PMID: 27556694 PMCID: PMC5308717 DOI: 10.18632/oncotarget.11394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 08/08/2016] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most common type of cancer affecting women. Despite the good prognosis when detected early, significant challenges remain in the treatment of metastatic breast cancer. The recruitment of the vacuolar H+-ATPase (V-H+-ATPase) to the plasma membrane, where it mediates the acidification of the tumor microenvironment (TME), is a recognized feature involved in the acquisition of a metastatic phenotype in breast cancer. Therefore, inhibitors of this pump have emerged as promising anticancer drugs. Lactoferrin (Lf) is a natural pro-apoptotic iron-binding glycoprotein with strong anticancer activity whose mechanism of action is not fully understood. Here, we show that bovine Lf (bLf) preferentially induces apoptosis in the highly metastatic breast cancer cell lines Hs 578T and MDA-MB-231, which display a prominent localisation of V-H+-ATPase at the plasma membrane, but not in the lowly metastatic T-47D or in the non-tumorigenic MCF-10-2A cell lines. We also demonstrate that bLf decreases the extracellular acidification rate and causes intracellular acidification in metastatic breast cancer cells and, much like the well-known proton pump inhibitors concanamycin A and bafilomycin A1, inhibits V-H+-ATPase in sub-cellular fractions. These data further support that bLf targets V-H+-ATPase and explain the selectivity of bLf for cancer cells, especially for highly metastatic breast cancer cells. Altogether, our results pave the way for more rational in vivo studies aiming to explore this natural non-toxic compound for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Cátia S Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Marília Gonçalves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Luís Loureiro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Lisandra Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Koval O, Kochneva G, Tkachenko A, Troitskaya O, Sivolobova G, Grazhdantseva A, Nushtaeva A, Kuligina E, Richter V. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3620510. [PMID: 28951871 PMCID: PMC5603130 DOI: 10.1155/2017/3620510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity.
Collapse
Affiliation(s)
- Olga Koval
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Galina Kochneva
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Anastasiya Tkachenko
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Olga Troitskaya
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Galina Sivolobova
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Antonina Grazhdantseva
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Anna Nushtaeva
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Elena Kuligina
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Vladimir Richter
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
12
|
Wang X, Wang X, Hao Y, Teng D, Wang J. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem Cell Biol 2017; 95:162-170. [DOI: 10.1139/bcb-2016-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011–2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
13
|
Luo G, Zhou Y, Yi W, Yi H. Expression levels of JNK associated with polymorphic lactotransferrin haplotypes in human nasopharyngeal carcinoma. Oncol Lett 2016; 12:1085-1094. [PMID: 27446399 DOI: 10.3892/ol.2016.4723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/12/2016] [Indexed: 12/19/2022] Open
Abstract
Lactotransferrin (LTF), a member of the transferrin family, serves a role in the innate immune response and is involved in anti-inflammatory, anti-microbial and anti-tumor activity. Alterations in the LTF gene are associated with an increased incidence of cancer. The LTF gene is polymorphic, and several common alleles may be observed in the general population. Our previous study identified a lower rate of occurrence of the 'A-G-G-T' haplotype (constructed with rs1126477, rs1126478, rs2073495 and rs9110) in nasopharyngeal carcinoma (NPC) patients compared with controls. In the present study, in order to elucidate a possible mechanism of LTF-mediated anti-tumor activity in NPC, the protein profiles of NPC and non-tumorous nasopharyngeal epithelium tissues with/without the 'A-G-G-T' haplotype were constructed using LTQ Orbitrap technology. The results revealed that c-Jun N-terminal kinase 2 (JNK2) was highly expressed in NPC tissues and non-tumor nasopharyngeal epithelium tissues without the 'A-G-G-T' haplotype. These results were confirmed by western blot analysis. Furthermore, microRNA (miRNA) microarray analysis was conducted to investigate the differential miRNA profiles of NPC and non-tumor nasopharyngeal epithelium tissues with/without the 'A-G-G-T' haplotype. It was observed that hsa-miR-1256 and hsa-miR-659, which are potentially targeted to the JNK2 gene, were downregulated in NPC tissues without the 'A-G-G-T' haplotype. Hsa-miR-298, another miRNA potentially targeted to the JNK2 gene, was downregulated in non-tumor nasopharyngeal epithelium tissues without the 'A-G-G-T' haplotype. In summary, these results suggested that the expression levels of JNK2 may be associated with polymorphic LTF haplotypes in human NPC.
Collapse
Affiliation(s)
- Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Yi
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
14
|
Mayeur S, Spahis S, Pouliot Y, Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid Redox Signal 2016; 24:813-36. [PMID: 26981846 DOI: 10.1089/ars.2015.6458] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Lactoferrin (Lf) is a nonheme iron-binding glycoprotein strongly expressed in human and bovine milk and it plays many functions during infancy such as iron homeostasis and defense against microorganisms. In humans, Lf is mainly expressed in mucosal epithelial and immune cells. Growing evidence suggests multiple physiological roles for Lf after weaning. RECENT ADVANCES The aim of this review is to highlight the recent advances concerning multifunctional Lf activities. CRITICAL ISSUES First, we will provide an overview of the mechanisms related to Lf intrinsic synthesis or intestinal absorption as well as its interaction with a wide spectrum of mammalian receptors and distribution in organs and cell types. Second, we will discuss the large variety of its physiological functions such as iron homeostasis, transportation, immune regulation, oxidative stress, inflammation, and apoptosis while specifying the mechanisms of action. Third, we will focus on its recent physiopathology implication in metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. Additional efforts are necessary before suggesting the potential use of Lf as a diagnostic marker or as a therapeutic tool. FUTURE DIRECTIONS The main sources of Lf in human cardiometabolic disorders should be clarified to identify new perspectives for future research and develop new strategies using Lf in therapeutics. Antioxid. Redox Signal. 24, 813-836.
Collapse
Affiliation(s)
- Sylvain Mayeur
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada
| | - Schohraya Spahis
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Yves Pouliot
- 3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Emile Levy
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| |
Collapse
|
15
|
Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine (Lond) 2016; 11:249-68. [DOI: 10.2217/nnm.15.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. Materials & methods: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. Results: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. Conclusion: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sishir K Kamalapuram
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Subramanian Krishnakumar
- L&T Ophthalmic Pathology Department, In charge Stem Cell Laboratory & Nano-biotechnology Laboratory Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
16
|
[Effects of decitabine against acute T lymphoblastic leukemia cell line Molt4]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:230-4. [PMID: 25854468 PMCID: PMC7342511 DOI: 10.3760/cma.j.issn.0253-2727.2015.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
目的 探讨去甲基化药物地西他滨对急性T淋巴细胞白血病细胞株Molt4细胞的影响及其可能的作用机制。 方法 CCK-8法检测地西他滨对细胞增殖的影响;Annexin Ⅴ/PI双重染色法检测地西他滨对细胞凋亡的影响;PI染色法检测细胞周期变化;转录组高通量测序筛选组间差异基因;亚硫酸氢盐测序法检测地西他滨作用Molt4细胞前后乳铁蛋白(LTF)基因启动子CpG岛的甲基化水平变化;实时定量RT-PCR及Western blot法分别检测LTF mRNA及蛋白的表达变化。 结果 地西他滨能有效抑制Molt4细胞的增殖,抑制率呈时间和剂量依赖性增加,并能诱导细胞凋亡,使细胞阻滞于G0/G1期。0.50 µmol/L地西他滨处理72 h后,Molt4细胞LTF基因启动子甲基化率较对照组降低(45.0%对72.3%),差异有统计学意义(P<0.05),mRNA和蛋白表达增加(P值均<0.05),同时还检测到caspase 3、caspase 9凋亡蛋白表达增加(P值均<0.05)。 结论 地西他滨诱导Molt4细胞凋亡,阻滞细胞周期在G0/G1期,抑制细胞增殖。LTF基因是地西他滨作用的重要靶点。
Collapse
|
17
|
Hu L, Gao CH, Hong C, Zhong Q, Dong HL, Gao XM. Expression, purification, and breast cancer cell inhibiting effect of recombinant human lactoferrin C-lobe. Biosci Biotechnol Biochem 2015; 80:257-63. [PMID: 26405758 DOI: 10.1080/09168451.2015.1088376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lactoferrin (LTF), a multifunctional glycoprotein of the transferrin family mainly found in exotic secretions in mammals, is an important defense molecule against not only microbial invasion but also tumors. It folds into two globular domains (N- and C-lobes) each containing an iron-binding site. The cationic antimicrobial peptide in N-lobe is known to exert anti-tumor effect via a non-receptor-mediated pathway. However, whether LTF C-lobe also contributes to its anti-tumor activity remains to be investigated. In this study, a human LTF fragment (amino acid residues 343-682) covering the C-lobe was expressed with a histidine tag in E. coli and the purified polypeptide refolded through a series of buffer changing procedure. The resultant recombinant protein caused significant growth arrest of breast carcinoma cells MDA-MB-231 in a dose- and time-dependent manner, evidently via induction of apoptosis of the cell. Our data suggest a positive role for the C-lobe of human LTF in controlling tumors in vitro.
Collapse
Affiliation(s)
- Lulu Hu
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| | - Chen-Hui Gao
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| | - Chao Hong
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| | - Qiao Zhong
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| | - Hong-Liang Dong
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| | - Xiao-Ming Gao
- a Institute of Biology and Medical Sciences, School of Biology and Basic Medical Science, Soochow University , Suzhou , China
| |
Collapse
|
18
|
Lim LY, Koh PY, Somani S, Al Robaian M, Karim R, Yean YL, Mitchell J, Tate RJ, Edrada-Ebel R, Blatchford DR, Mullin M, Dufès C. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1445-54. [PMID: 25933695 PMCID: PMC4509555 DOI: 10.1016/j.nano.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 03/06/2015] [Accepted: 04/06/2015] [Indexed: 12/01/2022]
Abstract
The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. From the Clinical Editor Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies.
Collapse
Affiliation(s)
- Li Ying Lim
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Pei Yin Koh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Majed Al Robaian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Reatul Karim
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Yi Lyn Yean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jennifer Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David R Blatchford
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
19
|
|
20
|
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 2014; 6:88-100. [PMID: 25476483 PMCID: PMC4312762 DOI: 10.1007/s13238-014-0119-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
21
|
Zhang Y, Lima CF, Rodrigues LR. Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr Rev 2014; 72:763-73. [PMID: 25406879 DOI: 10.1111/nure.12155] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lactoferrin has been widely studied over the last 70 years, and its role in diverse biological functions is now well known and generally accepted by the scientific community. Usually, alterations of the lactoferrin gene in cells are associated with an increased incidence of cancer. Several studies suggest that exogenous treatment with lactoferrin and its derivatives can efficiently inhibit the growth of tumors and reduce susceptibility to cancer. None of these studies, however, reported a consistent outcome with regard to the mechanisms underlying the anticancer effects of lactoferrin. In this review, the association of lactoferrin with cancer is thoroughly discussed, from lactoferrin gene expression to the potential use of lactoferrin in cancer therapy. Lactoferrin cytotoxicity against several cancers is reported to occur in distinct ways under different conditions, namely by cell membrane disruption, apoptosis induction, cell cycle arrest, and cell immunoreaction. Based on these mechanisms, new strategies to improve the anticancer effects of the lactoferrin protein and/or its derivatives are proposed. The potential for lactoferrin in the field of cancer research (including as a chemotherapeutic agent in cancer therapy) is also discussed.
Collapse
Affiliation(s)
- Yunlei Zhang
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; College of Life Science, Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology, Hunan Normal University, Changsha, China
| | | | | |
Collapse
|
22
|
Abstract
OBJECTIVES Lactoferrin (Lf) is an iron-binding glycoprotein present in high concentration in human milk. It is a pleiotropic protein and is involved in diverse bioactivities, such as stimulation of cell proliferation and differentiation, immune competence, antimicrobial activities, anti-infection, and anticancer activities. Lf has been shown to be partly resistant to proteolysis in the gastrointestinal tract and may thus play important roles in the intestine and liver during infancy. Talactoferrin alfa (TLf) is a recombinant human Lf shown to protect against sepsis and necrotizing enterocolitis as well as cancer. Because bovine Lf (bLf) and human Lf have different amino acid composition and all 3 Lfs differ in glycosylation, they may have different functions/potency. The objective of the present study was to investigate and compare bioactivities of TLf and Lfs from human and bovine milk and thus to provide a better understanding of the bioactivities of different forms of Lf and their potential applications. METHODS In the present study, Caco-2 and C3A cells were used as intestine and liver models to evaluate internalization of Lfs by intestine and liver cells, effects of Lfs on cell proliferation and differentiation, growth of enteropathogenic Escherichia coli (EPEC), chemokine (C-C motif) ligand 20 (CCL20) secretion, and transforming growth factor (TGF)-β1 expression. In addition, HT-29 cells were used as a colon cancer cell model to examine the effects of Lfs on apoptosis. RESULTS All Lfs significantly enhanced cell proliferation and differentiation, apoptosis, CCL20 secretion, and TGF-β1 expression. They also markedly suppressed growth of EPEC. Compared with bLf, TLf showed stronger effects on suppression of EPEC growth and enhancement of TGF-β1 secretion, whereas bLf exhibited more potent effects on cell differentiation, apoptosis, and CCL20 secretion. CONCLUSIONS Our results demonstrate that TLf has several bioactivities similar to human Lf and bLf from milk and may play critical roles in immune and intestinal development in infants as well as having anti-cancer activities in adults. TLf and bLf may be used for different applications owing to their various potencies. TLf may preferentially be used for anti-bacterial applications, whereas bLf may be used for cancer therapy because it exhibits stronger effects on CCL20 secretion, cell differentiation, and apoptosis.
Collapse
|
23
|
Hoedt E, Chaoui K, Huvent I, Mariller C, Monsarrat B, Burlet-Schiltz O, Pierce A. SILAC-based proteomic profiling of the human MDA-MB-231 metastatic breast cancer cell line in response to the two antitumoral lactoferrin isoforms: the secreted lactoferrin and the intracellular delta-lactoferrin. PLoS One 2014; 9:e104563. [PMID: 25116916 PMCID: PMC4130549 DOI: 10.1371/journal.pone.0104563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Lactoferrins exhibit antitumoral activities either as a secretory lactoferrin or an intracellular delta-lactoferrin isoform. These activities involve processes such as regulation of the cell cycle and apoptosis. While lactoferrin has been shown to exert its function by activating different transduction pathways, delta-lactoferrin has been proven to act as a transcription factor. Like many tumor suppressors, these two proteins are under-expressed in several types of cancer, particularly in breast cancer. Methodology/Principal Findings In order to compare the differential effects of the re-introduction of lactoferrin isoforms in breast cancer cells we chose the cancerous mammary gland MDA-MB-231 cell line as a model. We produced a cell line stably expressing delta-lactoferrin. We also treated these cells with fresh purified human breast lactoferrin. We performed two quantitative proteomic studies in parallel using SILAC coupled to mass spectrometry in order to compare the effects of different doses of the two lactoferrin isoforms. The proteome of untreated, delta-lactoferrin expressing and human lactoferrin treated MDA-MB-231 cells were compared. Overall, around 5300 proteins were identified and quantified using the in-house developed MFPaQ software. Among these, expression was increased by 1.5-fold or more for around 300 proteins in delta-lactoferrin expressing cells and 190 proteins in lactoferrin treated cells. At the same time, about 200 and 40 proteins were found to be downregulated (0-0.7-fold) in response to delta-lactoferrin and lactoferrin, respectively. Conclusions/Significance Re-introduction of delta-lactoferrin and lactoferrin expression in MDA-MB-231 mainly leads to modifications of protein profiles involved in processes such as proliferation, apoptosis, oxidative stress, the ubiquitin pathway, translation and mRNA quality control. Moreover, this study identified new target genes of delta-lactoferrin transcriptional activity such as SelH, GTF2F2 and UBE2E1.
Collapse
Affiliation(s)
- Esthelle Hoedt
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
| | - Karima Chaoui
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Isabelle Huvent
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
| | | | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Annick Pierce
- UGSF, UMR 8576 CNRS, USTL, IFR 147, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
24
|
Ye Q, Zheng Y, Fan S, Qin Z, Li N, Tang A, Ai F, Zhang X, Bian Y, Dang W, Huang J, Zhou M, Zhou Y, Xiong W, Yan Q, Ma J, Li G. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PLoS One 2014; 9:e103298. [PMID: 25057912 PMCID: PMC4110006 DOI: 10.1371/journal.pone.0103298] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023] Open
Abstract
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane-dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.
Collapse
Affiliation(s)
- Qiurong Ye
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Ying Zheng
- Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zailong Qin
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Nan Li
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuemei Zhang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhui Bian
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Wei Dang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
- * E-mail: (JM) (JM); (GL) (GL)
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
- * E-mail: (JM) (JM); (GL) (GL)
| |
Collapse
|
25
|
Zhou Y, Wang W, Zheng D, Peng S, Xiong W, Ma J, Zeng Z, Wu M, Zhou M, Xiang J, Xiang B, Li X, Li X, Li G. Risk of nasopharyngeal carcinoma associated with polymorphic lactotransferrin haplotypes. Med Oncol 2011; 29:1456-62. [DOI: 10.1007/s12032-011-0079-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 09/25/2011] [Indexed: 12/29/2022]
|