1
|
Lazarova M, Stefanova M, Denev P, Taseva T, Vassileva V, Tasheva K. Neuroprotective Effect of Marrubium vulgare Extract in Scopolamine-Induced Cognitive Impairment in Rats: Behavioral and Biochemical Approaches. BIOLOGY 2024; 13:426. [PMID: 38927306 PMCID: PMC11201232 DOI: 10.3390/biology13060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The potential of Marrubium vulgare to alleviate scopolamine (Sco)-induced deficits in spatial working memory has drawn considerable scientific interest. This effect is partly attributed to its potent antioxidant and acetylcholinesterase inhibitory (AChEI) activities. This study examined the effects of M. vulgare extract, standardized to marrubiin content, on recognition memory in healthy and Sco-treated rats. Male Wistar rats (200-250 g) were divided into four groups. The extract was orally administered for 21 days and Sco (2 mg/kg) was intraperitoneally injected for 11 consecutive days. Memory performance was assessed using the novel object recognition test. Levels of acetylcholine (ACh), noradrenaline (NA), serotonin (Sero), and brain-derived neurotrophic factor (BDNF) and the phosphorylation of cAMP response element-binding protein (p-CREB) were evaluated in the cortex and hippocampus via ELISA. BDNF and CREB expression levels were assessed using RT-PCR. The results showed that M. vulgare significantly alleviated Sco-induced memory impairment, preserved cholinergic function in the hippocampus, increased NA levels in the brain, and restored pCREB expression in the cortex following Sco-induced reduction. In healthy rats, the extract upregulated BDNF, pCREB, and Bcl2 expression. Our findings indicate that the neuroprotective effects of M. vulgare may be linked to the modulation of cholinergic function, regulation of NA neurotransmission, and influence on key memory-related molecules.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria;
| | - Teodora Taseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.T.); (K.T.)
| |
Collapse
|
2
|
Zarrinkalam E, Arabi SM, Komaki A, Ranjbar K. The preconditioning effect of different exercise training modes on middle cerebral artery occlusion induced-behavioral deficit in senescent rats. Heliyon 2023; 9:e17992. [PMID: 37483773 PMCID: PMC10362108 DOI: 10.1016/j.heliyon.2023.e17992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Brain abilities decrease after brain stroke in elderly. The neuroprotective effect of exercise training has been proved in clinical trials and animal experiment. Nevertheless, it is not still clear what kind of exercise has greater protective effect. The present study aimed at investigating pre-conditioning effect of endurance, resistance, and concurrent training on learning ability, anxiety, and spatial memory in aged rats following stroke strength with middle cerebral artery occlusion. Method We used 50 male Wistar rats (age = 24 months) that were assigned randomly in five groups; 1: sham group, 2: Control group 3: Endurance training 4: Resistance training, and 5: concurrent training. The exercise training groups received training for four weeks. Following training, middle cerebral artery occlusion was applied to induce cerebral ischemia. Using the elevated plus maze, shuttle box test, and Morris water maze, neurocognitive functions were tested in the sample rats. Results It was found that resistance training did not affect spatial memory in the acquisition phase, while concurrent training and endurance training enhanced spatial memory in the acquisition phase. On the contrary, spatial memory was improved by resistance training in the retention phase, while concurrent and endurance exercises did not affect spatial memory in the retention phase. Passive avoidance learning ability at acquisition phase was more in resistance group compared to the endurance and concurrent training in shuttle box test, but in retention phase was similar between training groups. Unlike endurance and concurrent training, resistance training reduced anxiety in senescent rats. Conclusion All three exercise types alleviated aversive learning and memory impairment induced by stroke in senescent rats. Notably, the resistance training showed a greater protective effect compared to the other two training methods.
Collapse
Affiliation(s)
- Ebrahim Zarrinkalam
- Department of Physical Education and Sport Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Seyedeh Manizheh Arabi
- Department of Motor Behavior, Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
3
|
Wadie CM, Ali RH, Mohamed AEHA, Labib JMW, Sabaa AR, Awad HEA, Abou-Bakr DA. A comparative study of acetyl-l-carnitine and caloric restriction impact on hippocampal autophagy, apoptosis, neurogenesis, and astroglial function in AlCl 3-induced Alzheimer's in rats. Can J Physiol Pharmacol 2023; 101:244-257. [PMID: 36988119 DOI: 10.1139/cjpp-2022-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a worldwide chronic progressive neurodegenerative disease. We aimed to investigate and compare the neuroprotective impact of acetyl-l-carnitine and caloric restriction (CR) on AlCl3-induced AD to explore the pathogenesis and therapeutic strategies of AD. Sixty-seven adult male Wistar rats were allocated into Control, AlCl3, AlCl3-acetyl-l-carnitine, and AlCl3-CR groups. Each of AlCl3 and acetyl-l-carnitine were given by gavage in a daily dose of 100 mg/kg and CR was conducted by giving 70% of the daily average caloric intake of the control group. Rats were subjected to behavioral assessment using open field test, Y maze, novel object recognition test and passive avoidance test, biochemical assay of serum phosphorylated tau (pTau), hippocampal homogenate phosphorylated adenosine monophosphate-activated protein kinase, Beclin-1, Bcl-2-associated X protein, and B cell lymphoma 2 (Bcl2) as well as hippocampal Ki-67 and glial fibrillary acidic protein immunohistochemistry. AlCl3-induced cognitive and behavioral deficits coincident with impaired autophagy and enhanced apoptosis associated with defective neurogenesis and defective astrocyte activation. Acetyl-l-carnitine and CR partially protect against AlCl3-induced behavioral, cognitive, biochemical, and histological changes, with more ameliorative effect of acetyl-l-carnitine on hippocampal apoptotic markers, and more obvious behavioral and histological improvement with CR.
Collapse
Affiliation(s)
- Christina Magdy Wadie
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Radwa Hassan Ali
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Jolly M W Labib
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Abdel Rhman Sabaa
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Hossam Eldin Ahmed Awad
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Doaa Ahmed Abou-Bakr
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
4
|
Protective effects of L-carnitine against valproic acid-induced memory impairment and anxiety-like behavior in adult rat. Physiol Behav 2022; 253:113853. [PMID: 35609723 DOI: 10.1016/j.physbeh.2022.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to explore the effects of valproic acid (VPA) on spatial and passive avoidance learning and memory as well as to assess the protective effects of L-Carnitine (LC) against VPA-induced memory deficit in the rat. Male Wistar rats received VPA (300 mg/kg/daily by i.p. injection), or LC (50 mg/kg/ daily by i.p. injection), or co-treatment with VPA and LC for 28 days. Following 28 days, Elevated Plus-Maze (EPM), Morris Water Maze (MWM), and Passive Avoidance Learning (PAL) tasks were used to evaluate the anxiety-like behavior and spatial and passive learning and memory, respectively. Our results showed that VPA has no effect on memory acquisition (in both MWM and PAL) but induced reference memory impairment. We demonstrated that treatment with LC partially ameliorated the impairment in the retrieval of reference memory and passive avoidance learning. Moreover, VPA increased anxiety-like behavior, which was partially reversed by the administration of LC. In conclusion, these results show that LC is effective in counteracting the anxiety-like behavior and reference memory impairment caused by VPA. Therefore, LC may serve as a possible therapeutic agent for VPA-induced memory change.
Collapse
|
5
|
Al-Amin MM, Chowdury MIA, Saifullah ARM, Alam MN, Jain P, Hossain M, Alam MA, Kazi M, Ahmad A, Raish M, Alqahtani A, Reza HM. Levocarnitine Improves AlCl 3-Induced Spatial Working Memory Impairment in Swiss albino Mice. Front Neurosci 2019; 13:278. [PMID: 30971884 PMCID: PMC6444114 DOI: 10.3389/fnins.2019.00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Aluminum, a neurotoxic substance, causes oxidative stress induced-neurodegenerative diseases. Several lines of evidence suggest that levocarnitine has an antioxidant effect and also plays an important role in beta-oxidation of fatty acids. However, the role of levocarnitine in aluminum-induced neurotoxicity has not been well documented. Here we aimed to investigate the effect of levocarnitine on aluminum chloride (AlCl3)-induced oxidative stress and memory dysfunction. Methods: Male Swiss albino mice (n = 30) were treated with either control (saline) or AlCl3 or AlCl3 plus levocarnitine or levocarnitine or astaxanthin plus AlCl3 or astaxanthin alone. The spatial working memory was determined by radial arm maze (RAM). In addition, we measured the lipid peroxidation (MDA), glutathione (GSH), advanced oxidation of protein products (AOPP), nitric oxide (NO) and activity of superoxide dismutase (SOD) in the various brain regions including prefrontal cortex (PFC), striatum (ST), parietal cortex (PC), hippocampus (HIP) hypothalamus (HT) and cerebellum (CB). We used astaxanthin as a standard antioxidant to compare the antioxidant activity of levocarnitine. Results: The RAM data showed that AlCl3 treatment (50 mg/kg) for 2 weeks resulted in a significant deficit in spatial learning in mice. Moreover, aluminum exposure significantly (p < 0.05) increased the level of oxidative stress markers such as MDA, GSH, AOPP and NO in the various brain regions compared to the controls. In addition, combined administration of levocarnitine and AlCl3 significantly (p < 0.05) lowered the MDA, AOPP, GSH and NO levels in mice. Conclusion: Our results demonstrate that levocarnitine could serve as a potential therapeutic agent in the treatment of oxidative stress associated diseases as well as in memory impairment.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - A R M Saifullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammed Nazmul Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Lu C, Lv J, Dong L, Jiang N, Wang Y, Wang Q, Li Y, Chen S, Fan B, Wang F, Liu X. Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamine-induced cognitive deficits in mice. Phytother Res 2018; 32:1056-1063. [DOI: 10.1002/ptr.6044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Cong Lu
- Research Center for Pharmacology and Toxicology; Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC); Beijing 100193 China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS); Beijing 100193 China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology; Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC); Beijing 100193 China
| | - Liming Dong
- Research Center for Pharmacology and Toxicology; Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC); Beijing 100193 China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology; Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC); Beijing 100193 China
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS); Beijing 100193 China
| | - Qiong Wang
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center; Southwest Medical University; Luzhou 646000 China
| | - Yinghui Li
- National Laboratory of Human Factors Engineering/The State Key Laboratory of Space Medicine Fundamentals and Application; China Astronaut Research and Training Center; Beijing 100094 China
| | - Shanguang Chen
- National Laboratory of Human Factors Engineering/The State Key Laboratory of Space Medicine Fundamentals and Application; China Astronaut Research and Training Center; Beijing 100094 China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS); Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS); Beijing 100193 China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology; Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC); Beijing 100193 China
| |
Collapse
|
7
|
Ponomareva EV. [The use of acetyl-L-carnitine in gerontological practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:81-86. [PMID: 28980618 DOI: 10.17116/jnevro20171176281-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of literature data on the acetyl-L-carnitine treatment in gerontological practice is performed. This review describes the range of biochemical activity and mechanism of action of the drug. The profile and specificity of acetyl-L-carnitine action and the possibility of combining nicergoline with other drugs is discussed. The results of preclinical and clinical studies on the application of acetyl-L-carnitine in the world medical practice are analyzed. The analysis of the studies demonstrates the high efficacy and a broad spectrum of acetyl-L-carnitine treatment.
Collapse
Affiliation(s)
- E V Ponomareva
- Federal State Budgetary Scientific Institution 'Mental Health Research Center', Moscow, Russia
| |
Collapse
|
8
|
Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: A comparative study. Brain Res Bull 2016; 127:234-247. [DOI: 10.1016/j.brainresbull.2016.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023]
|
9
|
Demarest TG, Schuh RA, Waddell J, McKenna MC, Fiskum G. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy. J Neurochem 2016; 137:714-29. [PMID: 27197831 DOI: 10.1111/jnc.13590] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein carbonylation after HI. These findings provide novel insight into the pathophysiology of sexually dimorphic outcomes following HI.
Collapse
Affiliation(s)
- Tyler G Demarest
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rosemary A Schuh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary C McKenna
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Acetyl-L-Carnitine Prevents Methamphetamine-Induced Structural Damage on Endothelial Cells via ILK-Related MMP-9 Activity. Mol Neurobiol 2014; 53:408-422. [PMID: 25465237 DOI: 10.1007/s12035-014-8973-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. Acetyl-L-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METH-triggered MMPs' activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.
Collapse
|
11
|
Cutuli D, De Bartolo P, Caporali P, Laricchiuta D, Foti F, Ronci M, Rossi C, Neri C, Spalletta G, Caltagirone C, Farioli-Vecchioli S, Petrosini L. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front Aging Neurosci 2014; 6:220. [PMID: 25202271 PMCID: PMC4142709 DOI: 10.3389/fnagi.2014.00220] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| | - Paola Caporali
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| | - Maurizio Ronci
- Department of Experimental and Clinical Sciences, University "G. D'Annunzio" Chieti, Pescara, Italy ; Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia Mawson Lakes, SA, Australia
| | - Claudia Rossi
- Department of Experimental and Clinical Sciences, University "G. D'Annunzio" Chieti, Pescara, Italy
| | - Cristina Neri
- Lab of Proteomic and metabonomic, Santa Lucia Foundation Rome, Italy ; Department of Experimental Medicine and Surgery, University Tor Vergata of Rome Rome, Italy
| | | | - Carlo Caltagirone
- Lab of Clinical and Behavioral Neurology, Santa Lucia Foundation Rome, Italy ; Department of Neuroscience, University Tor Vergata of Rome Rome, Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Santa Lucia Foundation Rome, Italy
| | - Laura Petrosini
- Department of Psychology, University Sapienza of Rome Rome, Italy ; Lab of Experimental and Behavioral Neurophysiology, Santa Lucia Foundation Rome, Italy
| |
Collapse
|
12
|
Melo MCSC, Gadelha D, Mascena GV, Oliveira TKB, Brandt CT. Learning and survival memory undergoing a permanent bilateral carotid ligation in rats. Acta Cir Bras 2013; 28:102-5. [PMID: 23370922 DOI: 10.1590/s0102-86502013000200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the effect of cerebral hypoxia-ischemia on memory and learning survival of rats submitted to permanent bilateral carotid ligation (PBCL). METHODS Twenty-four survivors of PBCL were evaluated after 30 days with regard to memory and learning using a water survival maze. Twenty-three healthy rats were used as control group. The results were expressed by their means and standard error of the mean (SEM). p<0.05 was used for rejecting the null hypothesis. The study was approved by the Ethics Committee for animal investigation. RESULTS The mortality rate for the surgery was 44.4%. The latency time to find the survival platform was higher in rats that underwent PBCL (Normal: 10.24 ± 1.85s - STUDY 25.30 ± 4.69s - Mann - Whitney p=0.0388). Additionally, the type of swimming and the spatial stability of the studied rats on the survival platform were compromised in these animals. CONCLUSION The permanent bilateral carotid ligation induces change in the learning and survival memory.
Collapse
|
13
|
Grondin Y, Cotanche DA, Manneberg O, Molina R, Treviño-Villarreal JH, Sepulveda R, Clifford R, Bortoni ME, Forsberg S, Labrecque B, Altshul L, Brain JD, Jackson RL, Rogers RA. Pulmonary delivery of d-methionine is associated with an increase in ALCAR and glutathione in cochlear fluids. Hear Res 2013; 298:93-103. [PMID: 23296212 DOI: 10.1016/j.heares.2012.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/28/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022]
Abstract
In animals, hearing loss resulting from cochlear mechanosensory cell damage can be mitigated by antioxidants such as d-methionine (d-met) and acetyl-l-carnitine (ALCAR). The systemic routes of administration of these compounds, that must of necessity transit trough the cochlear fluids, may affect the antioxidant levels in the cochlea and the resulting oto-protective effect. In this study, we analyzed the pharmacokinetics of [(14)C]d-met in the cochlea and four other tissues after intratracheal (IT), intranasal (IN), and oral by gavage (OG) administration and compared it to intravenous administration (IV). We then analyzed the effect of these four routes on the antioxidant content of the cochlear fluids after d-met or ALCAR administration, by liquid chromatography/mass spectrometry. Our results showed that the concentration of methionine and ALCAR in cochlear fluids significantly increased after their respective systemic administration. Interestingly, d-met administration also contributed to an increase of ALCAR. Our results also showed that the delivery routes differently affected the bioavailability of administered [(14)C]d-met as well as the concentrations of methionine, ALCAR and the ratio of oxidized to reduced glutathione. Overall, pulmonary delivery via IT administration achieved high concentrations of methionine, ALCAR, and oxidative-related metabolites in cochlear fluids, in some cases surpassing IV administration, while IN route appeared to be the least efficacious. To our knowledge, this is the first report of the direct measurements of antioxidant levels in cochlear fluids after their systemic administration. This report also demonstrates the validity of the pulmonary administration of antioxidants and highlights the different contributions of d-met and ALCAR allowing to further investigate their impact on oxidative stress in the cochlear microenvironment.
Collapse
Affiliation(s)
- Yohann Grondin
- Molecular and Integrative Physiologic Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|