1
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
2
|
Preparation, Characterization, and Evaluation of Breviscapine Nanosuspension and Its Freeze-Dried Powder. Pharmaceutics 2022; 14:pharmaceutics14050923. [PMID: 35631508 PMCID: PMC9143020 DOI: 10.3390/pharmaceutics14050923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/19/2023] Open
Abstract
As a biopharmaceutics classification system (BCS) class IV drug, breviscapine (Bre) has low solubility in water, poor chemical stability, a short biological half-life and rapid removal from plasma. This paper prepared a Bre nanosuspension (Bre-NS) by an ultrasound-assisted anti-solvent precipitation method. Characterization of Bre-NS was studied using a Box–Behnken design concerning drug concentration in DMSO, an anti-solvent-to-solvent ratio, and sonication time. Under the optimized conditions of 170 mg/mL for the drug concentration, a 1:60 solvent-to-anti-solvent ratio, and a 9 min sonication time, the particle size of Bre-NS was 303.7 ± 7.3 nm, the polydispersity index was 0.178 ± 0.015, and the zeta potential was −31.10 ± 0.26 mV. Combined with the results from differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-infrared spectroscopy (FT-IR), the findings indicated that the crystal form and chemical structure of Bre-NS did not change during the entire process. The optimized formulation displayed good stability, increased solubility, and better in vitro release. Therefore, the results of this study can be a reference for the delivery system design of insoluble active components and effective parts in traditional Chinese medicine.
Collapse
|
3
|
Yang C, Zhao Q, Yang S, Wang L, Xu X, Li L, Al-Jamal WT. Intravenous Administration of Scutellarin Nanoparticles Augments the Protective Effect against Cerebral Ischemia-Reperfusion Injury in Rats. Mol Pharm 2022; 19:1410-1421. [PMID: 35441510 PMCID: PMC9066406 DOI: 10.1021/acs.molpharmaceut.1c00942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
This
study investigates the protective effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with
scutellarin (SCU), a flavone isolated from the traditional Chinese
medicineErigeron breviscapus (Vant.)
Hand.-Mazz., in reducing cerebral ischemia/reperfusion (I/R) injury in vivo. The focal cerebral I/R injury model was established
by occluding the middle cerebral artery for 1 h in male Sprague-Dawley
(SD) rats. Our SCU-PLGA NPs exhibited an extended in vitro release profile and prolonged blood circulation in rats with cerebral
ischemia. More importantly, when administered intravenously once a
day for 3 days, SCU-PLGA NPs increased the SCU level in the ischemic
brain, compared to free SCU, resulting in a significant reduction
of the cerebral infarct volume after cerebral I/R. Furthermore, SCU-PLGA
NPs reversed the histopathological changes caused by cerebral I/R
injury, as well as attenuated cell apoptosis in the brain tissue,
as confirmed by hematoxylin and eosin, and TUNEL staining. Our findings
have revealed that our injectable SCU-PLGA NPs provide promising protective
effects against cerebral I/R injury, which could be used in combination
with the existing conventional thrombolytic therapies to improve stroke
management.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China.,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Qing Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Libin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xingyuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
4
|
Ma Y, Wang Q, Wang D, Huang J, Sun R, Mao X, Tian Y, Xia Q. Silica-Lipid Hybrid Microparticles as Efficient Vehicles
for Enhanced Stability and Bioaccessibility of Curcumin. Food Technol Biotechnol 2019; 57:319-330. [PMID: 31866745 PMCID: PMC6902299 DOI: 10.17113/ftb.57.03.19.6035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Curcumin is an active ingredient with multiple functions, but its application is often restricted due to its poor water solubility, weak stability, and consequently low bioaccessibility. Based on this, the aim of this work is to develop a new vehicle to overcome these restrictions. Here we developed a curcumin-loaded nanoemulsion and then curcumin-loaded silica-lipid hybrid microparticles through emulsification and vacuum drying, respectively. The loading of curcumin in the nanoemulsion and microparticles was (0.30±0.02) and (0.67±0.02) %, respectively. FTIR and XRD analyses of microparticles revealed that curcumin was encapsulated in porous, amorphous silica. In vitro antioxidant activities showed that the encapsulation would not affect the antioxidant activity of curcumin. In vitro simulated digestion indicated that nanoemulsion and microparticles had higher curcumin bioaccessibility than the control group. The storage stability of microparticles remained the same during 6 weeks in the dark at 4, 25 and 40 °C. Moreover, the microparticles had a better chemical stability than nanoemulsion under the light. The cell viability was over 80% when the concentration of nanocarriers was less than 45 μg/mL. Hence, the microparticles could be a promising means to load curcumin and improve its solubility, light stability and bioaccessibility.
Collapse
Affiliation(s)
- Yudi Ma
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 150 Renai Road 215123 Suzhou, PR China
| | - Qiang Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 150 Renai Road 215123 Suzhou, PR China
| | - Dantong Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 150 Renai Road 215123 Suzhou, PR China
| | - Juan Huang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 150 Renai Road 215123 Suzhou, PR China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China
| | - Xinyu Mao
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China
| | - Yuan Tian
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, No.2, Sipailou Street, 210096 Nanjing, PR China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, No. 2, Sipailou Street, 210096 Nanjing,
PR China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, No. 150 Renai Road 215123 Suzhou, PR China
| |
Collapse
|
5
|
Bindhani S, Mohapatra S, Kar R. Self Emulsifying Drug Delivery System: A Recent Approach. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.21569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.
Collapse
Affiliation(s)
- Sabitri Bindhani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - S. Mohapatra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - R.K. Kar
- Department of of Pharmaceutical Sciences, Dadhichi College of Pharmacy, Cuttack-754002, India
| |
Collapse
|
6
|
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wang H, Zhang G, Ma X, Liu Y, Feng J, Park K, Wang W. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Eur J Pharm Biopharm 2017; 115:177-185. [DOI: 10.1016/j.ejpb.2017.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 02/01/2023]
|
8
|
Wang J, Tan J, Luo J, Huang P, Zhou W, Chen L, Long L, Zhang LM, Zhu B, Yang L, Deng DYB. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J Nanobiotechnology 2017; 15:18. [PMID: 28249594 PMCID: PMC5333415 DOI: 10.1186/s12951-017-0251-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is the most common complication in diabetic patients relates to high expression of VEGF and microaneurysms. Scutellarin (Scu) turned out to be effective against diabetes related vascular endothelial cell dysfunction. However, its clinical applications have been limited by its low bioavailability. In this study, we formulated and characterized a novel intestinal target nanoparticle carrier based on amphiphilic chitosan derivatives (Chit-DC-VB12) loaded with scutellarin to enhance its bioavailability and then evaluated its therapeutic effect in experimental diabetic retinopathy model. RESULTS Chit-DC-VB12 nanoparticles showed low toxicity toward the human colon adenocarcinoma (Caco-2) cells and zebra fish within concentration of 250 μg/ml, owing to good biocompatibility of chitosan. The scutellarin-loaded Chit-DC-VB12 nanoparticles (Chit-DC-VB12-Scu) were then prepared by self-assembly in aqueous solution. Scanning electron microscopy and dynamic light scattering analysis indicated that the Chit-DC-VB12-Scu nanoparticles were spherical particles in the sizes ranging from 150 to 250 nm. The Chit-DC-VB12-Scu nanoparticles exhibited high permeation in Caco-2 cell, indicated it could be beneficial to be absorbed in humans. We also found that Chit-DC-VB12 nanoparticles had a high cellular uptake. Bioavailability studies were performed in Sprague-Dawley rats, which present the area under the curve of scutellarin of Chit-DC-VB12-Scu was two to threefolds greater than that of free scutellarin alone. Further to assess the therapeutic efficacy of diabetic retinopathy, we showed Chit-DC-VB12-Scu down-regulated central retinal artery resistivity index and the expression of angiogenesis proteins (VEGF, VEGFR2, and vWF) of retinas in type II diabetic rats. CONCLUSIONS Chit-DC-VB12 nanoparticles loaded with scutellarin have better bioavailability and cellular uptake efficiency than Scu, while Chit-DC-VB12-Scu nanoparticles alleviated the structural disorder of intraretinal neovessels in the retina induced by diabetes, and it also inhibited the retinal neovascularization via down-regulated the expression of angiogenesis proteins. In conclusion, the Chit-DC-VB12 nanoparticles enhanced scutellarin oral delivery efficacy and exhibited potential as small intestinal target promising nano-carriers for treatment of type II diabetes induced-retinopathy.
Collapse
Affiliation(s)
- Jingnan Wang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayun Tan
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahao Luo
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peilin Huang
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wuyi Zhou
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | | | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Ming Zhang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Banghao Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China.
| | - David Y B Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Kucinska-Lipka J, Gubanska I, Strankowski M, Cieśliński H, Filipowicz N, Janik H. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:671-681. [PMID: 28415514 DOI: 10.1016/j.msec.2017.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/26/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022]
Abstract
In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy (1HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration.
Collapse
Affiliation(s)
- J Kucinska-Lipka
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| | - I Gubanska
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - M Strankowski
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - H Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - N Filipowicz
- Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - H Janik
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Zhang L, Dan Q, Zou Y, Xia Q, Yuan H. Breviscapine promotes functional recovery in rats with traumatic brain injury associated with netrin‐1 upregulation. IBRAIN 2017. [DOI: 10.1002/j.2769-2795.2017.tb00017.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lang‐Chun Zhang
- Center of Experimental Animals, Kunming Medical UniversityKunmingYunnanChina
| | - Qi‐Qin Dan
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yu Zou
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qing‐Jie Xia
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hao Yuan
- Department of Spinal SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
11
|
Hörmann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions - A review. J Control Release 2015; 223:85-98. [PMID: 26699427 DOI: 10.1016/j.jconrel.2015.12.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/18/2022]
Abstract
Lipid nanosized emulsions or nanoemulsions (NE) are oil in water dispersions with an oil droplet size of about 200nm. This size of oil droplets dispersed in a continuous water phase is a prerequisite for the parenteral, namely intravenous administration. Many parenteral nutrition and drug emulsions on the market confirm the safe use of NE over years. Parenteral emulsions loaded with APIs (active pharmaceutical ingredients) are considered as drug delivery systems (DDS). DDS focuses on the regulation of the in vivo dynamics, such as absorption, distribution, metabolism, and extended bioavailability, thereby improving the effectiveness and the safety of the drugs. Using an emulsion as a DDS, or through the use of surface diversification of the dispersed oil droplets of emulsions, a targeted increase of the API concentration in some parts of the human body can be achieved. This review focuses on NE similar to the marketed once with no or only low amount of additional surfactants beside the emulsifier from a manufacturing point of view (technique, used raw materials).
Collapse
Affiliation(s)
- Karl Hörmann
- Fresenius Kabi Austria GmbH, Hafnerstraße 36, A-8055 Graz, Austria
| | - Andreas Zimmer
- Karl-Franzens-University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Member of BioTechMed Graz, Universitätsplatz 1, A-8010 Graz, Austria.
| |
Collapse
|
12
|
Zhang L, Zhang L, Zhang M, Pang Y, Li Z, Zhao A, Feng J. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv 2013; 22:475-86. [DOI: 10.3109/10717544.2013.861659] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
Guo C, Zhu Y, Weng Y, Wang S, Guan Y, Wei G, Yin Y, Xi M, Wen A. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:660-666. [PMID: 24291152 DOI: 10.1016/j.jep.2013.11.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. MATERIALS AND METHODS Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). RESULTS Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. CONCLUSION The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway might be involved in the therapeutic mechanism of breviscapine injection.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
14
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2013; 20:156-60. [PMID: 23434800 DOI: 10.1097/med.0b013e32835f8a71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Menon JU, Gulaka PK, McKay MA, Geethanath S, Liu L, Kodibagkar VD. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Am J Cancer Res 2012; 2:1199-207. [PMID: 23382776 PMCID: PMC3563152 DOI: 10.7150/thno.4812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/29/2012] [Indexed: 12/19/2022] Open
Abstract
An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.
Collapse
|