1
|
Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta 2021; 224:121810. [PMID: 33379035 DOI: 10.1016/j.talanta.2020.121810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Microfluidic system with multi-functional integration of high-throughput protein/peptide separation ability has great potential for improving the identification capacity of biological samples in proteomics. In this paper, a sample treatment platform was constructed by integrating reversed phase chromatography, immobilized enzyme reactor (IMER) and imprinted monolith through a microfluidic chip to achieve the online proteins fractionation, denaturation, digestion and peptides enrichment. We firstly synthesized a poly-allyl phenoxyacetate (AP) monolith and a lysine-glycine-glycine (KGG) imprinted monolith separately, and investigated in detail their performance in fractionating proteins and extracting KGG from the protein digests of MCF-7 cell. The removal percentage of 94.6% for MCF-7 cell protein and the recovery of 90.8% for KGG were obtained. The number of proteins and peptides identified on this microfluidic platform was 2,004 and 8,797, respectively, which was 2.8-fold and 3.0-fold higher than that of untreatment sample. The time consumed by this platform for a sample treatment was about 9.6 h, less than that of conventional method (approximate 13.3 h). In addition, this platform can enrich some peptide fragments containing KGG based on imprinted monolith, which can be served for the identification of ubiquitin-modified proteomics. The successful construction of this integrated microfluidic platform provides a considerable and efficient technical tool for simultaneous identification of proteomics and post-translational modification proteomics information.
Collapse
|
2
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
3
|
Dou M, Chouinard CD, Zhu Y, Nagy G, Liyu AV, Ibrahim YM, Smith RD, Kelly RT. Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Anal Bioanal Chem 2018; 411:5363-5372. [PMID: 30397757 DOI: 10.1007/s00216-018-1452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
Abstract
Mass spectrometry (MS)-based analysis of complex biological samples is essential for biomedical research and clinical diagnostics. The separation prior to MS plays a key role in the overall analysis, with separations having larger peak capacities often leading to more identified species and improved confidence in those identifications. High-resolution ion mobility (IM) separations enabled by Structures for Lossless Ion Manipulation (SLIM) can provide extremely rapid, high-resolution separations and are well suited as a second dimension of separation following nanoscale liquid chromatography (nanoLC). However, existing sample handling approaches for offline coupling of separation modes require microliter-fraction volumes and are thus not well suited for analysis of trace biological samples. We have developed a novel nanowell-mediated fractionation system that enables nanoLC-separated samples to be efficiently preconcentrated and directly infused at nanoelectrospray flow rates for downstream analysis. When coupled with SLIM IM-MS, the platform enables rapid and high-peak-capacity multidimensional separations of small biological samples. In this study, peptides eluting from a 100 nL/min nanoLC separation were fractionated into ~ 60 nanowells on a microfluidic glass chip using an in-house-developed robotic system. The dried samples on the chip were individually reconstituted and ionized by nanoelectrospray for SLIM IM-MS analysis. Using model peptides for characterization of the nanowell platform, we found that at least 80% of the peptide components of the fractionated samples were recovered from the nanowells, providing up to ~tenfold preconcentration for SLIM IM-MS analysis. The combined LC-SLIM IM separation peak capacities exceeded 3600 with a measurement throughput that is similar to current one-dimensional (1D) LC-MS proteomic analyses. Graphical abstract A nanowell-mediated multidimensional separation platform that combines nanoLC with SLIM IM-MS enables rapid, high-peak-capacity proteomic analyses.
Collapse
Affiliation(s)
- Maowei Dou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Christopher D Chouinard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andrey V Liyu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA. .,Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
4
|
Dou M, Zhu Y, Liyu A, Liang Y, Chen J, Piehowski PD, Xu K, Zhao R, Moore RJ, Atkinson MA, Mathews CE, Qian WJ, Kelly RT. Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chem Sci 2018; 9:6944-6951. [PMID: 30210768 PMCID: PMC6124911 DOI: 10.1039/c8sc02680g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
Abstract
Multidimensional peptide separations can greatly increase the depth of coverage in proteome profiling. However, a major challenge for multidimensional separations is the requirement of large biological samples, often containing milligram amounts of protein. We have developed nanowell-mediated two-dimensional (2D) reversed-phase nanoflow liquid chromatography (LC) separations for in-depth proteome profiling of low-nanogram samples. Peptides are first separated using high-pH LC and the effluent is concatenated into 4 or 12 nanowells. The contents of each nanowell are reconstituted in LC buffer and collected for subsequent separation and analysis by low-pH nanoLC-MS/MS. The nanowell platform minimizes peptide losses to surfaces in offline 2D LC fractionation, enabling >5800 proteins to be confidently identified from just 50 ng of HeLa digest. Furthermore, in combination with a recently developed nanowell-based sample preparation workflow, we demonstrated deep proteome profiling of >6000 protein groups from small populations of cells, including ∼650 HeLa cells and 10 single human pancreatic islet thin sections (∼1000 cells) from a pre-symptomatic type 1 diabetic donor.
Collapse
Affiliation(s)
- Maowei Dou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Andrey Liyu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Yiran Liang
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Jing Chen
- Department of Pathology , Immunology and Laboratory Medicine , University of Florida , Gainesville , FL 32611 , USA
| | - Paul D Piehowski
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA 99354 , USA
| | - Kerui Xu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| | - Ronald J Moore
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA 99354 , USA
| | - Mark A Atkinson
- Department of Pathology , Immunology and Laboratory Medicine , University of Florida , Gainesville , FL 32611 , USA
| | - Clayton E Mathews
- Department of Pathology , Immunology and Laboratory Medicine , University of Florida , Gainesville , FL 32611 , USA
| | - Wei-Jun Qian
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA 99354 , USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99354 , USA .
| |
Collapse
|
5
|
Sensitive method for glycosaminoglycan analysis of tissue sections. J Chromatogr A 2018; 1544:41-48. [PMID: 29506752 DOI: 10.1016/j.chroma.2018.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022]
Abstract
A simple, isocratic HPLC method based on HILIC-WAX separation, has been developed for analyzing sulfated disaccharides of glycosaminoglycans (GAGs). To our best knowledge, this is the first successful attempt using this special phase in nano-HPLC-MS analysis. Mass spectrometry was based on negative ionization, improving both sensitivity and specificity. Detection limit for most sulfated disaccharides were approximately 1 fmol; quantitation limits 10 fmol. The method was applied for glycosaminoglycan profiling of tissue samples, using surface digestion protocols. This novel combination provides sufficient sensitivity for GAG disaccharide analysis, which was first performed using prostate cancer tissue microarrays. Preliminary results show that GAG analysis may be useful for identifying cancer related changes in small amounts of tissue samples (ca. 10 μg).
Collapse
|
6
|
Construction and characterization of the Korean whole saliva proteome to determine ethnic differences in human saliva proteome. PLoS One 2017; 12:e0181765. [PMID: 28742128 PMCID: PMC5524414 DOI: 10.1371/journal.pone.0181765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022] Open
Abstract
As the first step to discover protein disease biomarkers from saliva, global analyses of the saliva proteome have been carried out since the early 2000s, and more than 3,000 proteins have been identified in human saliva. Recently, ethnic differences in the human plasma proteome have been reported, but such corresponding studies on human saliva in this aspect have not been previously reported. Thus, here, in order to determine ethnic differences in the human saliva proteome, a Korean whole saliva (WS) proteome catalogue indexing 480 proteins was built and characterized through nLC-Q-IMS-TOF analyses of WS samples collected from eleven healthy South Korean male adult volunteers for the first time. Identification of 226 distinct Korean WS proteins, not observed in the integrated human saliva protein dataset, and significant gene ontology distribution differences in the Korean WS proteome compared to the integrated human saliva proteome strongly support ethnic differences in the human saliva proteome. Additionally, the potential value of ethnicity-specific human saliva proteins as biomarkers for diseases highly prevalent in that ethnic group was confirmed by finding 35 distinct Korean WS proteins likely to be associated with the top 10 deadliest diseases in South Korea. Finally, the present Korean WS protein list can serve as the first level reference for future proteomic studies including disease biomarker studies on Korean saliva.
Collapse
|
7
|
Comparison of serum fractionation methods by data independent label-free proteomics. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Colvin KL, Yeager ME. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine? Proteomics Clin Appl 2015; 9:111-20. [PMID: 25408474 DOI: 10.1002/prca.201400157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver, Aurora, CO, USA; Cardiovascular Pulmonary Research, University of Colorado Denver, Aurora, CO, USA; Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
9
|
Mateos J, Pernas PF, Labora JF, Blanco F, Arufe MDC. Proteomic Applications in the Study of Human Mesenchymal Stem Cells. Proteomes 2014; 2:53-71. [PMID: 28250369 PMCID: PMC5302726 DOI: 10.3390/proteomes2010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/26/2014] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.
Collapse
Affiliation(s)
- Jesús Mateos
- Rheumatology Division, ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
| | - Pablo Fernández Pernas
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| | - Juan Fafián Labora
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| | - Francisco Blanco
- Rheumatology Division, ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María Del Carmen Arufe
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| |
Collapse
|
10
|
Carberry S, Zweyer M, Swandulla D, Ohlendieck K. Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. BIOLOGY 2013; 2:1438-64. [PMID: 24833232 PMCID: PMC4009800 DOI: 10.3390/biology2041438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022]
Abstract
In this article, we illustrate the application of difference in-gel electrophoresis for the proteomic analysis of dystrophic skeletal muscle. The mdx diaphragm was used as a tissue model of dystrophinopathy. Two-dimensional gel electrophoresis is a widely employed protein separation method in proteomic investigations. Although two-dimensional gels usually underestimate the cellular presence of very high molecular mass proteins, integral membrane proteins and low copy number proteins, this method is extremely powerful in the comprehensive analysis of contractile proteins, metabolic enzymes, structural proteins and molecular chaperones. This gives rise to two-dimensional gel electrophoretic separation as the method of choice for studying contractile tissues in health and disease. For comparative studies, fluorescence difference in-gel electrophoresis has been shown to provide an excellent biomarker discovery tool. Since aged diaphragm fibres from the mdx mouse model of Duchenne muscular dystrophy closely resemble the human pathology, we have carried out a mass spectrometry-based comparison of the naturally aged diaphragm versus the senescent dystrophic diaphragm. The proteomic comparison of wild type versus mdx diaphragm resulted in the identification of 84 altered protein species. Novel molecular insights into dystrophic changes suggest increased cellular stress, impaired calcium buffering, cytostructural alterations and disturbances of mitochondrial metabolism in dystrophin-deficient muscle tissue.
Collapse
Affiliation(s)
- Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Kildare, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, National University of Ireland, Maynooth, Kildare, Ireland.
| |
Collapse
|