1
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Salaria P, Subrahmanyeswara Rao NN, Dhameliya TM, Amarendar Reddy M. In silico investigation of potential phytoconstituents against ligand- and voltage-gated ion channels as antiepileptic agents. 3 Biotech 2024; 14:99. [PMID: 38456083 PMCID: PMC10914661 DOI: 10.1007/s13205-024-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
The most promising anticonvulsant phytocompounds were explored in this work using docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) approaches. A total of 70 phytochemicals were screened against α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate (NMDA), voltage-gated sodium ion channels (VGSC), and carbonic anhydrase enzyme II (CA II) receptors, and the docking results were compared to the reference drug phenytoin. Amentoflavone displayed the highest affinity for AMPA and VGSC receptors, with docking scores of - 10.4 and - 10.1 kcal/mol, respectively. Oliganthin H-NMDA and epigallocatechin-3-gallate-CA II complexes showed docking scores of - 10.9 and - 6.9 kcal/mol, respectively. All four complexes depicted a high dock score compared to the phenytoin complex at the binding site of the corresponding proteins. The MD simulation investigated the stabilities and favorable conformation of apoproteins and ligand/reference-bound complexes. The results revealed that proteins AMPA, VGSC, and CA II were more efficiently stabilized by lead phytochemicals than phenytoin binding. Additionally, principal component analysis and MM-PBSA results suggested that these lead phytocompounds have good compactness and strong binding free energy. Further, physicochemical and pharmacokinetic studies revealed that these final lead phytochemicals would be suitable for oral intake, have sufficient intestinal permeability, and have the ability to cross the blood-brain barrier (BBB). Comprehensively, this study predicted amentoflavone as the best lead phytochemical out of the 70 anticonvulsant phytocompounds that can be used to treat epilepsy. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03948-1.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101 India
| | - N N Subrahmanyeswara Rao
- Department of Chemical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - M Amarendar Reddy
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101 India
| |
Collapse
|
3
|
Malaník M, Čulenová M, Sychrová A, Skiba A, Skalicka-Woźniak K, Šmejkal K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals (Basel) 2023; 16:1061. [PMID: 37630977 PMCID: PMC10459181 DOI: 10.3390/ph16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Epilepsy is a neurological disease characterized by recurrent seizures that can lead to uncontrollable muscle twitching, changes in sensitivity to sensory perceptions, and disorders of consciousness. Although modern medicine has effective antiepileptic drugs, the need for accessible and cost-effective medication is urgent, and products derived from plants could offer a solution. For this review, we have focused on natural compounds that have shown anticonvulsant activity in in vivo models of epilepsy at relevant doses. In some cases, the effects have been confirmed by clinical data. The results of our search are summarized in tables according to their molecular targets. We have critically evaluated the data we present, identified the most promising therapeutic candidates, and discussed these in the text. Their perspectives are supported by both pharmacokinetic properties and potential interactions. This review is intended to serve as a basis for future research into epilepsy and related disorders.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| |
Collapse
|
4
|
Deng JP, Liu X, Li Y, Ni SH, Sun SN, Ou-Yang XL, Ye XH, Wang LJ, Lu L. Drug vector representation and potential efficacy prediction based on graph representation learning and transcriptome data: Acacetin from traditional Chinese Medicine model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:115966. [PMID: 36572325 DOI: 10.1016/j.jep.2022.115966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition. AIM OF THE STUDY Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin. MATERIALS AND METHODS Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results. RESULTS The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments. CONCLUSIONS We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
Collapse
Affiliation(s)
- Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xiao-Lu Ou-Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xiao-Han Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China.
| |
Collapse
|
5
|
Kim M, Kim Y, Lee HW, Jung JC, Oh S. Chrysanthemum morifolium and Its Bioactive Substance Enhanced the Sleep Quality in Rodent Models via Cl - Channel Activation. Nutrients 2023; 15:1309. [PMID: 36986039 PMCID: PMC10059900 DOI: 10.3390/nu15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Dried Chrysanthemum morifolium (Chry) flowers have been used in Korea as a traditional insomnia treatment. In this study, the sleep-promoting activity and improving sleep quality of Chry extract (ext) and its active substance linarin were analyzed by pentobarbital-induced sleep experiment in mice and electroencephalography (EEG), electromyogram (EMG) analysis in rats. In a dose-dependent manner, Chry ext and linarin promoted longer sleep duration in the pentobarbital-induced sleep test compared to pentobarbital-only groups at both hypnotic and subhypnotic doses. Chry ext administration also significantly improved sleep quality, as seen in the relative power of low-frequency (delta) waves when compared with the control group. Linarin increased Cl- uptake in the SH-SY5Y human cell line and chloride influx was reduced by bicuculline. After administration of Chry ext, the hippocampus, frontal cortex, and hypothalamus from rodents were collected and blotted for glutamic acid decarboxylase (GAD)65/67 and gamma-aminobutyric acid (GABA)A receptors subunit expression levels. The expression of α1-subunits, β2-subunits, and GAD65/67 of the GABAA receptor was modulated in the rodent brain. In conclusion, Chry ext augments pentobarbital-induced sleep duration and enhances sleep quality in EEG waves. These effects might be due to the activation of the Cl- channel.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - YuJaung Kim
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyang Woon Lee
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
- Graduate Programs in Artificial Intelligence Convergence, Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul 03765, Republic of Korea
| | - Jae-Chul Jung
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju 28220, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
6
|
Guzmán-Gutiérrez SL, Reyes-Chilpa R, González-Diego LR, Silva-Miranda M, López-Caamal A, García-Cruz KP, Jiménez-Mendoza MS, Arciniegas A, Espitia C. Five centuries of Cirsium ehrenbergii Sch. Bip. (Asteraceae) in Mexico, from Huitzquilitl to Cardo Santo: History, ethnomedicine, pharmacology and chemistry. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115778. [PMID: 36202165 DOI: 10.1016/j.jep.2022.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several medicinal plants, including the endemic herb Cirsum ehrenbergii (Asteraceae), have been documented in manuscripts, medical and botanical books written in Mexico since the XVI century until the present. This unique circumstance is a real window in the time that allows to investigate historical and contemporary ethnopharmacological knowledge. AIM OF THE STUDY To examine the persistence, disappearance, and transformation of ethnomedicinal knowledge of C. ehrenbergii along time. Also, to investigate the chemistry and pharmacology of this species in relation to its historical and present day main ethnomedical applications related to Central Nervous System and inflammation. MATERIALS AND METHODS A thorough review was performed of written sources of medicinal plants from XVI and onwards. For the pharmacological studies, the organic extracts were tested in mice models to assess its antidepressant and anti-inflammatory properties. The active extracts were studied chemically. The isolated compounds were identified by 1H, 13C NMR, or characterized by GC-MS. RESULTS Cirsum ehrenbergii was illustrated for the first time (1552) in the Libellus de Medicinalibus Indorum Herbis (Booklet of Medicinal Plants of the Indians) and named in the Nahuatl native language as huitzquilitl (edible thistle). It was there recommended as nigris sanguinis remedium (remedy for black blood), and for the treatment of illnesses with an inflammatory component. Nigris sanguinis was well known in the European medicine of that time and currently it has been interpreted as "depression". At the present time, peasants and native population in Mexico mainly name C. ehrenbergii in Spanish as cardo Santo (holy thistle). Its original Nahuatl name has been almost forgotten. However, these communities use this species, among other maladies, to heal "nervios" (anxiety and/or depression) and for anti-inflammatory purposes. These ailments and treatments resemble those recorded in the Libellus and in several medicinal plant books along centuries. The ethanol extract of C. ehrenbergii roots showed antidepressant-like activity in mice administered at 300 mg/kg, as indicated by the forced swim test (FST). The glycosylated flavonoid linarin was identified as antidepressant principle and was active at the doses of 30 and 60 mg/kg in the FST. Regarding to anti-inflammatory activity, the most active was the methylene chloride extract of the aerial parts, which contains taraxasterol, pseudotaraxasterol, β-sitosterol and stigmasterol. CONCLUSIONS Cirsium ehrenbergii extracts possess antidepressant-like (roots, EtOH) and anti-inflammatory (aerial parts, CH2Cl2) properties, containing active compounds. Our results sustain historical and present day ethnomedical applications of this species documented along five centuries.
Collapse
Affiliation(s)
- Silvia Laura Guzmán-Gutiérrez
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ricardo Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| | - Laura Rigel González-Diego
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mayra Silva-Miranda
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Alfredo López-Caamal
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Karla Paola García-Cruz
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - María Sofía Jiménez-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Amira Arciniegas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Clara Espitia
- Instituto de Investigaciones Biomédicas. Departamento de Inmunología. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
7
|
Chrysanthemum boreale Makino Inhibits Oxidative Stress-Induced Neuronal Damage in Human Neuroblastoma SH-SY5Y Cells by Suppressing MAPK-Regulated Apoptosis. Molecules 2022; 27:molecules27175498. [PMID: 36080264 PMCID: PMC9457777 DOI: 10.3390/molecules27175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.
Collapse
|
8
|
Kim MJ, Kim DH, Kwak HS, Yu IS, Um MY. Protective Effect of Chrysanthemum boreale Flower Extracts against A2E-Induced Retinal Damage in ARPE-19 Cell. Antioxidants (Basel) 2022; 11:antiox11040669. [PMID: 35453354 PMCID: PMC9024556 DOI: 10.3390/antiox11040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In age-related macular degeneration, N-retinylidene-N-retinylethanolamine (A2E) accumulates in retinal pigment epithelium (RPE) cells and generates oxidative stress, which further induces cell death. Polyphenols are well known for their antioxidant and beneficial effects on vision. Chrysanthemum boreale Makino (CB) flowers, which contain flavonoids, have antioxidant activity. We hypothesized that polyphenols in ethanolic extracts of CB (CBE) and its fractions suppressed A2E-mediated ARPE-19 cell damage, a human RPE cell line. CBE is rich in polyphenols, shows antioxidant activity, and suppresses intracellular accumulation of A2E and cell death induced by A2E. Among the five fractions, the polyphenol content and antioxidant effect were in the order of the ethyl acetate fraction (EtOAc) > butanol fraction (BuOH) > hexane fraction (Hex) > dichloromethane fraction (CH2Cl2) > water fraction (H2O). In contrast, the inhibitory ability of A2E accumulation and A2E-induced cell death was highest in H2O, followed by BuOH. In the correlation analysis, polyphenols in the H2O and BuOH fractions had a significant positive correlation with antioxidant effects, but no significant correlation with cell damage caused by A2E. Our findings suggest that substances other than polyphenols present in CBE can suppress the effects of A2E, and further research is needed.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
- Correspondence: ; Tel.: +82-63-219-9380
| | - Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Han Sub Kwak
- Research Division of Food Convergence, Korea Food Research Institute, Wanju 55365, Korea;
| | - In-Sun Yu
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| |
Collapse
|
9
|
Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, Koirala N, Adnan M, Alghamdi S, Assaggaf H, Alsiwiehri NO. A comprehensive review on antiepileptic properties of medicinal plants. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
10
|
Linarin, a Glycosylated Flavonoid, with Potential Therapeutic Attributes: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14111104. [PMID: 34832886 PMCID: PMC8621830 DOI: 10.3390/ph14111104] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Many flavonoids, as eminent phenolic compounds, have been commercialized and consumed as dietary supplements due to their incredible human health benefits. In the present study, a bioactive flavone glycoside linarin (LN) was designated to comprehensively overview its phytochemical and biological properties. LN has been characterized abundantly in the Cirsium, Micromeria, and Buddleja species belonging to Asteraceae, Lamiaceae, and Scrophulariaceae families, respectively. Biological assessments exhibited promising activities of LN, particularly, the remedial effects on central nervous system (CNS) disorders, whereas the remarkable sleep enhancing and sedative effects as well as AChE (acetylcholinesterase) inhibitory activity were highlighted. Of note, LN has indicated promising anti osteoblast proliferation and differentiation, thus a bone formation effect. Further biological and pharmacological assessments of LN and its optimized semi-synthetic derivatives, specifically its therapeutic characteristics on osteoarthritis and osteoporosis, might lead to uncovering potential drug candidates.
Collapse
|
11
|
Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem Toxicol 2020; 145:111708. [PMID: 32866514 DOI: 10.1016/j.fct.2020.111708] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acacetin is a di-hydroxy and mono-methoxy flavone present in various plants, including black locust, Damiana, Silver birch. Literature information revealed that acacetin exhibits an array of pharmacological potential including chemopreventive and cytotoxic properties in cancer cell lines, prevents ischemia/reperfusion/myocardial infarction-induced cardiac injury, lipopolysaccharide (LPS), 1-methyl-4-phenyl pyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neuroinflammation, LPS and sepsis-induced lung injury, rheumatoid and collagen-induced arthritis, inhibit the microbial growth, obesity, viral-mediated infections as well as hepatic protection. PURPOSE This review highlights the therapeutic potential of acacetin, with updated and comprehensive information on the biological sources, chemistry, and pharmacological properties along with the possible mechanism of action, safety aspects, and future research opportunities. STUDY DESIGN The information was retrieved from various search engines, including Pubmed, SciFinder, Science direct, Inxight:drugs, Google scholar, and Meta cyc. RESULT The first section of this review focuses on the detailed biological source of acacetin, chromatographic techniques used for isolation, chemical characteristics, the method for the synthesis of acacetin, and the available natural and synthetic derivatives. Subsequently, the pharmacological activities, including anti-cancer, anti-inflammatory, anti-viral, anti-microbial, anti-obesity, have been discussed. The pharmacokinetics data and toxicity profile of acacetin are also discussed. CONCLUSION Acacetin is a potent molecule reported for its strong anti-inflammatory and anti-cancer activity, however further scientific evidence is essential to validate its potency in disease models associated with inflammation and cancer. There is limited information available for toxicity profiling of acacetin; therefore, further studies would aid in establishing this natural flavone as a potent candidate for research studies at clinical setup.
Collapse
|
12
|
Design, synthesis and evaluation of 5-substituted 1-H-tetrazoles as potent anticonvulsant agents. Arch Pharm Res 2016; 40:435-443. [DOI: 10.1007/s12272-016-0881-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
|
13
|
Hwang SH, Paek JH, Lim SS. Simultaneous Ultra Performance Liquid Chromatography Determination and Antioxidant Activity of Linarin, Luteolin, Chlorogenic Acid and Apigenin in Different Parts of Compositae Species. Molecules 2016; 21:molecules21111609. [PMID: 27886116 PMCID: PMC6273441 DOI: 10.3390/molecules21111609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
Linarin (LA), luteolin (LE), chlorogenic acid (CA) and apigenin (AP) are four major flavonoids with various promising bioactivities found in Compositae (COP) species. A reliable, reproducible and accurate method for the simultaneous and quantitative determination of these four major flavonoids by Ultra Performance Liquid Chromatography (UPLC) analysis was developed. This method should be appropriate for the quality assurance of COP. The UPLC separation was carried out using an octadecylsilane (ODS) Hypersil (2.1 mm × 250 mm, 1.9 μm) and a mobile phase composed of acetonitrile and 0.1% formic acid in water at a flow rate 0.44 mL/min and ultraviolet (UV) detection 254 nm. Gradient elution was employed. The method was precise, with relative standard deviation below 3.0% and showed excellent linearity (R² > 0.999). The recoveries for the four flavonoids in COP were between 95.49%-106.23%. The average contents of LA, LE, CA and AP in different parts (flower, leave and stem) of COP were between 0.64-1.47 g/100 g, 0.66-0.89 g/100 g, 0.32-0.52 g/100 g and 0.16-0.18 g/100 g, respectively. The method was accurate and reproducible and it can provide a quantitative basis for quality control of COP.
Collapse
Affiliation(s)
- Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea.
| | - Ji Hun Paek
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea.
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea.
| |
Collapse
|
14
|
Cui P, Dou TY, Li SY, Lu JX, Zou LW, Wang P, Sun YP, Hao DC, Ge GB. Highly selective and efficient biotransformation of linarin to produce tilianin by naringinase. Biotechnol Lett 2016; 38:1367-73. [PMID: 27146204 DOI: 10.1007/s10529-016-2116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/27/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To develop a practical method to prepare tilianin by highly selective and efficient hydrolysis of the C-7 rhamnosyl group from linarin. RESULTS Naringinase was utilized to selectively catalyze the formation of tilianin using linarin as the starting material. The reaction conditions, including temperature, pH, metal ions, substrate concentration and enzyme concentration, were optimized. At 60 °C, naringinase showed enhanced α-L-rhamnosidase activity while the β-D-glucosidase activity was abrogated. The addition of Mg(2+), Fe(2+) and Co(2+) was also beneficial for selective biotransformation of linarin to tilianin. Under the optimized conditions (pH 7.0 at 60 °C), linarin could be nearly completely transformed to tilianin with excellent selectivity (>98.9 %), while that of the by-product acacetin was less than 1.1 %. In addition, the structure of target product tilianin was fully characterized by HR-MS and (1)H-NMR. CONCLUSION A highly selective and efficient biotransformation of linarin to tilianin was developed by the proper control of incubation temperature, which enhanced the α-L-rhamnosidase activity of naringinase and blocked its β-D-glucosidase activity.
Collapse
Affiliation(s)
- Pan Cui
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Tong-Yi Dou
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Shi-Yang Li
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jun-Xia Lu
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Li-Wei Zou
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ping Wang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan-Ping Sun
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Da-Cheng Hao
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
15
|
Nugroho A, Choi JS, Park HJ. Analysis of Flavonoid Composition of Korean Herbs in the Family of Compositae and their Utilization for Health. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Agung Nugroho
- Department of Agro-industrial Technology, Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru 70712, Indonesia
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju 220-702, Korea
| |
Collapse
|
16
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
17
|
Zhao BT, Kim EJ, Son KH, Son JK, Min BS, Woo MH. Quality evaluation and pattern recognition analyses of marker compounds from five medicinal drugs of Rutaceae family by HPLC/PDA. Arch Pharm Res 2015; 38:1512-20. [DOI: 10.1007/s12272-015-0583-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/21/2015] [Indexed: 11/24/2022]
|
18
|
Preparation of 4-butylaniline-bonded silica gel for the solid-phase extraction of flavone glycosides. J Sep Sci 2015; 38:1149-55. [DOI: 10.1002/jssc.201400922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 11/07/2022]
|
19
|
The role of flavonoids on oxidative stress in epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:171756. [PMID: 25653736 PMCID: PMC4306219 DOI: 10.1155/2015/171756] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.
Collapse
|
20
|
Preparative Purification of Linarin Extracts from Dendranthema indicum Flowers and Evaluation of Its Antihypertensive Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:394276. [PMID: 25505921 PMCID: PMC4258341 DOI: 10.1155/2014/394276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
Background. Preliminary research showed that linarin (LIN) might have a relationship with the antihypertensive effect of Dendranthema indicum flowers. However, the preparative method for LIN enriched extract from Dendranthema indicum flowers was not clear and its antihypertensive effect was not confirmed. In this study, we designed a series of experiments to develop an efficient method for purification of LIN extracts and confirm the possibility of LIN extracts to be an antihypertensive drug. Materials and Methods. HPLC-VWD/DAD were used in the process of developing purification method. The antihypertensive effect of LIN extracts was tested by CODA Mouse & Rat Tail-Cuff Blood Pressure System; western blot and biochemical analysis were used to investigate mechanism and toxicity. Results. The content and recovery of LIN reached 55.68 ± 2.08% and 66.65 ± 1.73%, respectively, through solid-liquid extraction. The composition of product was stable through the analysis of fingerprint. Chronic administration of LIN extracts reduced blood pressure obviously which had a relationship with the inhibition of renin-angiotensin system (RAS) in kidney and the function indexes of kidney and liver had no variations. Conclusions. The preparation method was simple, low-cost, and stable, and it was fit for industrial application. The LIN prepared by this method had the potential to be an antihypertensive drug.
Collapse
|
21
|
Abstract
SUMMARY
Introduction. Flavonoids are a large group of natural compounds that have been considered to be beneficial in ameliorating some age-dependent disorders. However, a potential use of these compounds in epilepsy treatment has not been systematically reviewed.
Aim. This review describes the pharmacological activity of some polyphenols (flavonoids) in different animal models of seizures e.g. pentylenetetrazole-induced seizures, kainate-induced seizures and pentylenetetrazole kindling in rats.
Method and Discussion. A literature review was conducted using PubMed from 1963 to October 2013 relating effects of flavonoids on experimentally-induced seizures in rodents. Articles chosen for references were queried with the following prompts: “flavonoids and epilepsy”, “flavonoids and seizures”, “plant polyphenols and epilepsy”, and “plant polyphenols and seizures”. Out of 84 reports 32 pharmacological studies with chemically well-defined flavonoids and using widely accepted animal models of seizures have been taken into account in this review. No clinical data on the antiepileptic effect of flavonoids have been reported so far.
Conclusion. The reviewed data suggest the possible benefits of some chemically well-defined polyphenolic compounds of plant origin in antiepileptic treatment. Among flavonoids, resveratrol, baicalein, quercetin and rutin showed significant antiseizure activity. The ability of flavonoids to prevent brain excitability and to protect the brain against oxidative stress-induced damage suggests a potential use of some flavonoids at least as adjunctive therapy for the treatment of epilepsy.
Collapse
|