1
|
Huang P, Li Z, Nong L, Cheng J, Lin W. A therapeutic probe for detecting and inhibiting ONOO - in senescent cells. J Mater Chem B 2023; 11:2389-2396. [PMID: 36853656 DOI: 10.1039/d2tb02568j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Aging is an inevitable biological process, characterized by a general decline in the quality of all physiological functions and reactions involving all organs and tissues of the body. Oxidative stress is considered to be the main cause of aging, which may be caused by active nitrogen substances. ONOO- is one of the important active nitrogen substances. Therefore, detecting the changes of ONOO- in senescent cells is of great significance for the study of senescence. However, the study of ONOO- in senescent cells is not deep enough. Here, we designed and synthesized a fluorescent probe FLASN based on flavonol, which integrates ONOO- detection and aging treatment. Our probe FLASN was prepared by a simple synthesis process and was shown to have excellent spectral characteristics. Meanwhile, the results of bioimaging showed that the probe FLASN could detect endogenous/exogenous ONOO- in cells and in vivo, and could reduce the production of ONOO- in cells and in vivo stimulated by metformin. It is worth noting that for the first time, the change of ONOO- in senescent cells and in vivo was detected, and the therapeutic effect of flavonol on senescent cells and in vivo was confirmed, by using the probe FLASN.
Collapse
Affiliation(s)
- Ping Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| | - Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| | - Li Nong
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| | - Jie Cheng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|
2
|
Cognitive Healthy Aging in Mice: Boosting Memory by an Ergothioneine-Rich Hericium erinaceus Primordium Extract. BIOLOGY 2023; 12:biology12020196. [PMID: 36829475 PMCID: PMC9953177 DOI: 10.3390/biology12020196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Brain aging is a crucial risk factor for several neurodegenerative disorders and dementia. The most affected cognitive function is memory, worsening early during aging. Inflammation and oxidative stress are known to have a role in pathogenesis of cognitive impairments, and a link exists between aging/frailty and immunosenescence/inflammaging. Based on anti-aging properties, medicinal mushrooms represent a source to develop medicines and functional foods. In particular, Hericium erinaceus (He) displays several actions ranging from boosting the immune system to fighting senescence, due to its active ingredients/metabolites. Among these, Ergothioneine (ERGO) is known as the longevity vitamin. Currently, we demonstrated the efficacy of an ERGO-rich He primordium extract (He2) in preventing cognitive decline in a murine model of aging. We focused on recognition memory deterioration during aging, monitored through spontaneous behavioral tests assessing both memory components and frailty index. A parallel significant decrease in key markers of inflammation and oxidative stress, i.e., IL6, TGFβ1, GFAP, Nrf2, SOD1, COX2, NOS2, was revealed in the hippocampus by immunohistochemistry, accompanied by an enhancement of NMDAR1and mGluR2, crucially involved in glutamatergic neurotransmission. In summary, we disclosed a selective, preventive and neuroprotective effect of He2 on aged hippocampus, both on recognition memory as well on inflammation/oxidative stress/glutamate receptors expression.
Collapse
|
3
|
Searching for a Longevity Food, We Bump into Hericium erinaceus Primordium Rich in Ergothioneine: The “Longevity Vitamin” Improves Locomotor Performances during Aging. Nutrients 2022; 14:nu14061177. [PMID: 35334834 PMCID: PMC8950371 DOI: 10.3390/nu14061177] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Phenotypic frailty is characterized by a progressive decline in physical functioning. During ageing, morphological and functional alterations involve the brain, and chief theories involve oxidative stress, free radical accumulation, and reduced antioxidant defenses as the most implicated mechanisms. From boosting the immune system to fighting senescence, medicinal mushrooms have been found to have a number of health and longevity benefits. Among them, Hericium erinaceus (He) has been demonstrated to display a variety of physiological effects, including anti-aging properties. Thus, He represents an attractive natural source for developing novel medicines and functional foods, based on the identification of its active ingredients and metabolites. Particularly, H. erinaceus primordium (He2) extract contains a high amount of Ergothioneine (ERGO), the longevity vitamin. Herein, we revealed the preventive effect of ERGO-rich He2 extract in a preclinical model, focusing on locomotor decline during ageing monitored through spontaneous behavioral test. This effect was accompanied by a significant decrease in some oxidative stress markers (NOS2, COX2) paralleled by an increase in P53, showed in cerebellar cortex cells and fibres by immunohistochemistry. In summary, we demonstrated the neuro-protective and preventive effects of He2 extract during aging, probably due to its peculiarly high ERGO content.
Collapse
|
4
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
5
|
Valeri A, Chiricosta L, Calcaterra V, Biasin M, Cappelletti G, Carelli S, Zuccotti GV, Bramanti P, Pelizzo G, Mazzon E, Gugliandolo A. Transcriptomic Analysis of HCN-2 Cells Suggests Connection among Oxidative Stress, Senescence, and Neuron Death after SARS-CoV-2 Infection. Cells 2021; 10:cells10092189. [PMID: 34571838 PMCID: PMC8472605 DOI: 10.3390/cells10092189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
According to the neurological symptoms of SARS-CoV-2 infection, it is known that the nervous system is influenced by the virus. We used pediatric human cerebral cortical cell line HCN-2 as a neuronal model of SARS-CoV-2 infection, and, through transcriptomic analysis, our aim was to evaluate the effect of SARS-CoV-2 in this type of cells. Transcriptome analyses revealed impairment in TXN gene, resulting in deregulation of its antioxidant functions, as well as a decrease in the DNA-repairing mechanism, as indicated by the decrease in KAT5. Western blot analyses of SOD1 and iNOS confirmed the impairment of reduction mechanisms and an increase in oxidative stress. Upregulation of CDKN2A and a decrease in CDK4 and CDK6 point to the blocking of the cell cycle that, according to the deregulation of repairing mechanism, has apoptosis as the outcome. A high level of proapoptotic gene PMAIP1 is indeed coherent with neuronal death, as also supported by increased levels of caspase 3. The upregulation of cell-cycle-blocking genes and apoptosis suggests a sufferance state of neurons after SARS-CoV-2 infection, followed by their inevitable death, which can explain the neurological symptoms reported. Further analyses are required to deeply explain the mechanisms and find potential treatments to protect neurons from oxidative stress and prevent their death.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Valeria Calcaterra
- Department of Paediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.V.Z.)
- Paediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Stephana Carelli
- Paediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Paediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
- Paediatric Surgery Unit, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
- Correspondence:
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| |
Collapse
|
6
|
Lu D, Yu L, Li M, Zhai Q, Tian F, Chen W. Behavioral disorders caused by nonylphenol and strategies for protection. CHEMOSPHERE 2021; 275:129973. [PMID: 33639553 DOI: 10.1016/j.chemosphere.2021.129973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is widely used in daily production and life due to its good emulsification. In this review, we discuss toxicology studies that examined behavioral disorders caused by NP, the corresponding toxicological mechanisms in the central nervous system (CNS), and strategies for protection. Available in vitro and in vivo evidence suggests that exposure to NP during adulthood or early childhood is associated with cognitive dysfunction, including depression-like behaviors, anxiety-like behaviors, and impaired learning and memory. The main mechanisms underlying NP-related cognitive disorders include inflammation, destruction of synaptic plasticity, and destruction of important signaling pathways that affect the synthesis and secretion of neurotransmitters. The effects and mechanisms of NP exposure on CNS-mediated reproductive function, including interference with the expression of hormones, proteins, and enzymes, are discussed. Other abnormal behaviors such as locomotor activity and swimming behavior are also described. Several measures to prevent NP neurotoxicity are summarized. These measures are based on the toxicological mechanisms underlying NP exposure and include external protection and internal self-regulation of the nervous system. Finally, a new treatment idea is proposed based on the gut-brain axis. Characterizing the behavioral changes and underlying toxicity mechanisms associated with NP exposure and investigating the possible methods of treatment will help to expand the understanding of these mechanisms and could lead to more effective treatments.
Collapse
Affiliation(s)
- Dezhi Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Roda E, Priori EC, Ratto D, De Luca F, Di Iorio C, Angelone P, Locatelli CA, Desiderio A, Goppa L, Savino E, Bottone MG, Rossi P. Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging. Int J Mol Sci 2021; 22:6379. [PMID: 34203691 PMCID: PMC8232141 DOI: 10.3390/ijms22126379] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carmine Di Iorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Angelone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Anthea Desiderio
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| |
Collapse
|
8
|
Dendranthema zawadskii var. lucidum (Nakai) J.H. Park Extract Inhibits Cellular Senescence in Human Dermal Fibroblasts and Aging-Related Inflammation in Rats. Processes (Basel) 2021. [DOI: 10.3390/pr9050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Senescence is the phenomenon by which physiological functions of organisms degenerate with time. Cellular senescence is marked by an inhibition of cell cycle progression. Beta-galactosidase accumulates in the lysosomes of aged cells. In this study, human dermal fibroblast cells (HDFs) were treated with 0.5 μM doxorubicin for 4 h to induce cellular senescence. Senescence-associated beta-galactosidase (SA-β-gal) activity was then measured 72 h after treatment with aerial parts of Dendranthema zawadskii var. lucidum (Nakai) J.H. Park (DZ) extract. Treatment with DZ extract significantly decreased SA-β-gal activity in a dose-dependent manner in HDFs. Additionally, DZ extract treatment reduced age-related oxidative stress and inflammation in the aortas of aged rats. The reactive oxygen species (ROS) levels in aortas of aged control rats were higher than those in young rats. However, DZ extract-fed aged rats showed significantly lower ROS levels than the aged control rats. When the aged rats were treated with DZ extract at either 0.2 or 1.0 mg∙kg−1∙day−1, NF-κB levels in aorta tissue decreased significantly compared to those in aorta tissue of the aged control rats without DZ treatment. In addition, DZ extract-fed aged rat aortas showed significant reductions in expression of iNOS and COX-2 induced by NF-κB translocation. Therefore, these results suggest that DZ effectively inhibited senescence-related NF-κB activation and inflammation. DZ extract may have a role in the prevention of the vascular inflammatory responses that occur during vascular aging.
Collapse
|
9
|
Abstract
Previous studies have found that oxidative stress is the negative reaction of the imbalance between oxidation and antioxidation caused by free radicals, and it is the fuse of aging and many diseases. Scavenging the accumulation of free radicals in the body and inhibiting the production of free radicals are effective ways to reduce the occurrence of oxidative stress. In recent years, studies have found that oxidative stress has other effects on the body, such as anti-tumour. In this paper, the targets related to anti-oxidative stress were introduced, and they were divided into nuclear transcription factors, enzymes, solute carrier family 7, member 11 (SLC7A11) genes and iron death, ion channels, molecular chaperones, small molecules according to their different functions. In addition, we introduce the research status of agonists/inhibitors related to these targets, so as to provide some reference for the follow-up research and clinical application of anti-oxidative stress drugs.
Collapse
Affiliation(s)
- Jian-Hong Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang-Xu Dong
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Xi XJ, Chen SH, Mi H. Aldh2 gene reduces oxidative stress in the bladder by regulating the NF-κB pathway in a mouse model of ketamine-induced cystitis. Exp Ther Med 2020; 20:111. [PMID: 33005240 PMCID: PMC7523278 DOI: 10.3892/etm.2020.9239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase 2 (aldh2) serves an important role in the development of organ injury. Therefore, the present study investigated the effects of aldh2 on the oxidative stress response in a mouse model of ketamine-induced cystitis (KIC). A total of 60 8-week-old male Institute of Cancer Research wild-type (WT) mice and 45 aldh2 knock-out (KO) mice were randomized to receive low-dose ketamine (30 mg/kg), high-dose ketamine (60 mg/kg) or normal saline (controls). At 4, 8 and 12 weeks post-injection, bladder tissues were harvested and used to investigate the protective mechanisms of aldh2 on bladder function. The results demonstrated that aldh2 KO mice exhibited significant weight loss following chronic ketamine injection compared with that in WT mice. Furthermore, ketamine treatment increased the urination rate (P<0.05), pathological score (P<0.05), levels of the oxidative stress product malondialdehyde (P<0.05) in addition to reducing the expression of the anti-oxidative stress enzyme superoxide dismutase (P<0.05) and glutathione-SH (P<0.05). Oxidative stress in aldh2 KO mice was also found to significantly enhance the expression of proteins associated with the NF-κB signaling pathway, which promoted the expression of inducible nitric oxide synthase (P<0.05) and cyclooxygenase-2 (P<0.05) further. Finally, aldh2 KO mice demonstrated higher severity of fibrosis in the submucosal and muscular layers of the bladder. In conclusion, the present study suggests that aldh2 serves a protective role in preventing inflammation and fibrosis in KIC.
Collapse
Affiliation(s)
- Xiao Jian Xi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shao Hua Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hua Mi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Ajmone-Cat MA, Spinello C, Valenti D, Franchi F, Macrì S, Vacca RA, Laviola G. Brain-Immune Alterations and Mitochondrial Dysfunctions in a Mouse Model of Paediatric Autoimmune Disorder Associated with Streptococcus: Exacerbation by Chronic Psychosocial Stress. J Clin Med 2019; 8:jcm8101514. [PMID: 31547098 PMCID: PMC6833026 DOI: 10.3390/jcm8101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Adverse psychosocial experiences have been shown to modulate individual responses to immune challenges and affect mitochondrial functions. The aim of this study was to investigate inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific, for four weeks. Our results indicate that psychosocial stress exacerbated individual response to GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress, may exacerbate the long-term consequences of exposure to GAS processes through the promotion of central immunomodulatory and oxidative stress.
Collapse
Affiliation(s)
- Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Chiara Spinello
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Francesca Franchi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| |
Collapse
|
12
|
Feng M, Kim J, Field K, Reid C, Chatzistamou I, Shim M. Aspirin ameliorates the long-term adverse effects of doxorubicin through suppression of cellular senescence. FASEB Bioadv 2019; 1:579-590. [PMID: 32123852 PMCID: PMC6996307 DOI: 10.1096/fba.2019-00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/17/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023] Open
Abstract
A number of childhood cancer survivors develop adverse, late onset side effects of earlier cancer treatments, known as the late effects of cancer therapy. As the number of survivors continues to increase, this growing population is at increased risk for a number of health-related problems. In the present study, we have examined the effect of aspirin on the late effects of chemotherapy by treating juvenile mice with doxorubicin (DOX). This novel mouse model produced various long-term adverse effects, some of which resemble premature aging phenotypes. DOX also resulted in the tissue accumulation of senescent cells and up-regulation of cyclooxygenase-2 (COX2) expression. However, treatment with aspirin following juvenile exposure to DOX improved body weight gain, ameliorated the long-term adverse effects, and reduced the levels of senescence markers. Moreover, aspirin reduced p53 and p21 accumulation in DOX-treated human and mouse fibroblasts. However, the suppressive effect of aspirin on DOX-induced p53 accumulation was significantly decreased in COX2 knockout mouse embryonic fibroblasts. Additionally, treatment of senescent fibroblasts with aspirin or celecoxib, a COX2 specific inhibitor, reduced cell viability and decreased the levels of Bcl-xL protein. Taken together, these studies suggest that aspirin may be able to reduce the late effects of chemotherapy through the suppression of cellular senescence.
Collapse
Affiliation(s)
- Mingxiao Feng
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Joohwee Kim
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Kevin Field
- UNC School of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Christine Reid
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & ImmunologySchool of MedicineUniversity of South CarolinaColumbiaSCUSA
| | - Minsub Shim
- Department of BiochemistryCollege of Graduate Studies and Arizona College of Osteopathic MedicineMidwestern UniversityGlendaleAZUSA
| |
Collapse
|
13
|
He MT, Lee AY, Park CH, Cho EJ. Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro. Nutr Res Pract 2019; 13:279-285. [PMID: 31388403 PMCID: PMC6669067 DOI: 10.4162/nrp.2019.13.4.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/OBJECTIVES Excessive production of reactive oxygen species (ROS) such as hydroxyl (·OH), nitric oxide (NO), and hydrogen peroxide (H2O2) is reported to induce oxidative stress. ROS generated by oxidative stress can potentially damage glial cells in the nervous system. Cordyceps militaris (CM), a kind of natural herb widely found in East Asia. In this study, we investigated the free radical scavenging activity of the CM extract and its neuroprotective effects in H2O2-induced C6 glial cells. MATERIALS/METHODS The ethanol extract of CM (100-1,000 µg/mL) was used to measure DPPH, ·OH, and NO radical scavenging activities. In addition, hydrogen peroxide (H2O2)-induced C6 glial cells were treated with CM at 0.5-2.5 µg/mL for measurement of cell viability, ROS production, and protein expression resulting from oxidative stress. RESULTS The CM extract showed high scavenging activities against DPPH, ·OH, and NO radicals at concentration of 1,000 µg/mL. Treatment of CM with H2O2-induced oxidative stress in C6 glial cells significantly increased cell viability, and decreased ROS production. Cyclooxygenase-2 and inducible nitric oxide synthase protein expression was down-regulated in CM-treated groups. In addition, the protein expression level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular regulated protein kinases (p-ERK) in H2O2-induced C6 glial cells was down-regulated upon CM administration. CONCLUSION CM exhibited radical scavenging activity and protective effect against H2O2 as indicated by the increased cell viability, decreased ROS production, down-regulation of inflammation-related proteins as well as p-p38, p-JNK, and p-ERK protein levels. Therefore, we suggest that CM could play the protective role from oxidative stress in glial cells.
Collapse
Affiliation(s)
- Mei Tong He
- Department of Food Science and Nutrition, Pusan National University, Busandaehak-ro 63 beon-gil 2, geumjeong-gu, Busan 46241, Korea
| | - Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busandaehak-ro 63 beon-gil 2, geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
14
|
Çimen B, Çimen L, Çetin İ, Cetin A. Alpha-lipoic acid alleviates lipopolysaccharide-induced liver damage in rats via antioxidant effect. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.534849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Perinatal exposure to nonylphenol induces microglia-mediated nitric oxide and prostaglandin E2 production in offspring hippocampus. Toxicol Lett 2019; 301:114-124. [DOI: 10.1016/j.toxlet.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
16
|
Novaes LS, dos Santos NB, Dragunas G, Perfetto JG, Leza JC, Scavone C, Munhoz CD. Repeated Restraint Stress Decreases Na,K-ATPase Activity via Oxidative and Nitrosative Damage in the Frontal Cortex of Rats. Neuroscience 2018; 393:273-283. [DOI: 10.1016/j.neuroscience.2018.09.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
|
17
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
18
|
Kim J, Vaish V, Feng M, Field K, Chatzistamou I, Shim M. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice. Aging (Albany NY) 2017; 8:2392-2406. [PMID: 27750221 PMCID: PMC5115895 DOI: 10.18632/aging.101060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.
Collapse
Affiliation(s)
- Joohwee Kim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Vivek Vaish
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Mingxiao Feng
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Field
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Fardid R, Salajegheh A, Mosleh-Shirazi MA, Sharifzadeh S, Okhovat MA, Najafi M, Rezaeyan A, Abaszadeh A. Melatonin Ameliorates The Production of COX-2, iNOS, and The Formation of 8-OHdG in Non-Targeted Lung Tissue after Pelvic Irradiation. CELL JOURNAL 2017; 19:324-331. [PMID: 28670525 PMCID: PMC5412791 DOI: 10.22074/cellj.2016.3857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
In this study, we evaluated the bystander effect of radiation on the regulation of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and 8-hydroxydeoxyguanosine
(8-OHdG) in lung tissues of Sprague-Dawley rats with and without pre-administration of
melatonin. A 2×2 cm2 area of the pelvis of male Sprague-Dawley rats with and without
pre-administration of melatonin (100 mg/kg) by oral and intraperitoneal injection was irradiated with a 3 Gy dose of 1.25 MeV γ-rays. Alterations in the levels of COX-2, iNOS,
and 8-OHdG in the out-of-field lung areas of the animals were detected by enzyme immunoassay. The bystander effect significantly increased COX-2, iNOS, and 8-OHdG levels
in non-targeted lung tissues (P<0.05). Melatonin ameliorated the bystander effect of radiation and significantly reduced the level of all examined biomarkers (P<0.05). The results
indicated that the ameliorating effect of a pre-intraperitoneal (IP) injection of melatonin
was noticeably greater compared to oral pre-administration. Our findings revealed that
the bystander effect of radiation could induce oxidative DNA damage and increase the
levels of imperative COX-2 and iNOS in non-targeted lung tissues. Interestingly, melatonin could modulate the indirect destructive effect of radiation and reduce DNA damage
in non-targeted cells.
Collapse
Affiliation(s)
- Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Salajegheh
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-ionizing Radiation Protection Research Center, Department of Radiotherapy and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical sciences, Shiraz, Iran
| | - Mohammad Ali Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical sciences, Shiraz, Iran
| | - Masoud Najafi
- Department of Biomedical Physics and Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Abaszadeh
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Park JS, Choi HI, Bae EH, Ma SK, Kim SW. Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-κB in renal proximal tubule epithelial cells. Int J Mol Med 2017; 39:701-710. [DOI: 10.3892/ijmm.2017.2883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
21
|
The protective mechanism of quercetin-3-O-β-D-glucuronopyranoside (QGC) in H2O2-induced injury of feline esophageal epithelial cells. Arch Pharm Res 2016; 39:1324-34. [PMID: 27522656 DOI: 10.1007/s12272-016-0808-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Quercetin-3-O-β-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus. Recent studies have shown that QGC exhibits anti-inflammatory, anti-oxidateve effect in vivo and cytoprotective effect in vitro. Reactive oxygen species (ROS), at low concentration, play role as a primary signal or second messenger, however, at high concentration, ROS are cytotoxic. In this study, we investigated the protective mechanism of QGC in H2O2-induced injury of Feline Esophageal Epithelial Cells. Primary-cultured feline esophagus cells were identified by an indirect immunofluorescent staining method using a cytokeratin monoclonal antibody. Cell viability was determined by the conventional MTT reduction assay. Western blot analysis was performed with specific antibodies to investigate the activation of MAPKs, NF-κB, and IκB-α, and the expression of COX-2. When the cells were exposed to 600 μM H2O2 medium for 24 h, cell viability decreased to 54 %. However, when cells were pretreated with 50-150 μM QGC for 12 h, the viability of cells exposed to H2O2 significantly increased in the dose dependent manner. QGC (50 μM, 12 h) also inhibited the expression of COX-2 induced by 10 μM H2O2 for 24 h. We found that treatment of H2O2 activated p38 MAPK and JNK, but not ERK. However QGC inhibited the H2O2-induced p38 MAPK and JNK phosphorylation. In addition, NF-κB was activated by H2O2 and translocated into the nucleus, but QGC inhibited the activation of NF-κB by blocking degradation of IκB. These data suggest that QGC reduces H2O2-induced COX-2 production by modulating the p38 MAPK, JNK, NF-κB signal pathway in feline esophageal epithelial cells.
Collapse
|
22
|
Park S, Kim CS, Min J, Lee SH, Jung YS. A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red ginseng. J Nutr Sci Vitaminol (Tokyo) 2015; 60:159-66. [PMID: 25078371 DOI: 10.3177/jnsv.60.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury.
Collapse
Affiliation(s)
- Sok Park
- Division of Sports Industry & Science, Mokwon University
| | | | | | | | | |
Collapse
|
23
|
Chao CT, Chiang CK. Uremic toxins, oxidative stress, and renal fibrosis: an interwined complex. J Ren Nutr 2014; 25:155-9. [PMID: 25511523 DOI: 10.1053/j.jrn.2014.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022] Open
Abstract
The prevalence of end-stage renal diseases is currently on the rise globally, and finding the way to curb this tide is urgently needed. Tubulointerstitial fibrosis is a common pathway for essentially all the nephropathy categories known to date, and the manifestations of renal fibrosis include excessive deposition of extracellular matrix with distortion of renal microstructures and functional deterioration. Uremic toxins have been gradually found to play an important role in the development of progressive renal fibrosis, with protein-bound indoxyl sulfate, p-cresol, and p-cresyl sulfate receiving the most attention. However, the contribution of oxidative stress among the pathogenesis of uremic toxins and renal fibrosis has not been evaluated much until recently. In this review, we will discuss about the nature and sources of oxidative stress in the kidney and how uremic toxins use oxidative stress to orchestrate the processes of renal fibrosis.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Integrative Diagnostics and Therapeutics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
24
|
Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 2014; 6:19. [PMID: 25243060 PMCID: PMC4169693 DOI: 10.1186/2045-824x-6-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion molecules and an impaired vasodilatory function. Increased expression of adhesion molecules amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both conduit arteries and resistance arterioles. Age-related impaired function also associates with phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and pericytes. Age-related morphological changes are in most of cases organ-specific and include microvascular wall thickening and collagen deposition that affect the basement membrane, with the consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide (NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic attempts have been suggested to improve microvascular function in age-related end-organ failure, and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the most promising results. Research efforts should persist to fully elucidate the biomolecular basis of age-related microvascular dysfunction in order to better support new therapeutic strategies aimed to improve quality of life and to reduce morbidity and mortality among the elderly patients.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Gaetano Arcuri
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| |
Collapse
|