1
|
Aulifa DL, Amirah SR, Rahayu D, Megantara S, Muchtaridi M. Pharmacophore Modeling and Binding Affinity of Secondary Metabolites from Angelica keiskei to HMG Co-A Reductase. Molecules 2024; 29:2983. [PMID: 38998937 PMCID: PMC11243442 DOI: 10.3390/molecules29132983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Statins are cholesterol-lowering drugs with a mechanism of inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase, but long-term use can cause side effects. An example of a plant capable of reducing cholesterol levels is Angelica keiskei (ashitaba). Therefore, this study aimed to obtain suitable compounds with inhibitory activity against the HMG-CoA reductase enzyme from ashitaba through in silico tests. The experiment began with screening and pharmacophore modeling, followed by molecular docking on ashitaba's compounds, statins groups, and the native ligand was (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-methylethyl)-1H-imidazole-1-yl]-3,5-dihydroxyheptanoic acid (4HI). Based on the results of the molecular docking simulations, 15 hit compounds had a small binding energy (ΔG). Pitavastatin, as the comparator drug (ΔG = -8.24 kcal/mol; Ki = 2.11 µM), had a lower ΔG and inhibition constant (Ki) than the native ligand 4HI (ΔG = -7.84 kcal/mol; Ki = 7.96µM). From ashitaba's compounds, it was found that 4'-O-geranylnaringenin, luteolin, isobavachalcone, dorsmannin A, and 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxychalcone have low ΔG of below -6 kcal/mol. The lowest ΔG value was found in 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxy chalcone with a ΔG of -6.67 kcal/mol and Ki value of 16.66 µM, which was lower than the ΔG value of the other comparator drugs, atorvastatin (ΔG = -5.49 kcal/mol; Ki = 1148.17 µM) and simvastatin (ΔG = -6.50 kcal/mol; Ki = 22.34 µM). This compound also binds to the important amino acid residues, including ASN755D, ASP690C, GLU559D, LYS735D, LYS691C, and SER684C, through hydrogen bonds. Based on the results, the compound effectively binds to six important amino acids with good binding affinity and only requires a small concentration to reduce half of the enzyme activity.
Collapse
Affiliation(s)
- Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
- Study Center for Development of Pharmaceutical Preparations, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Siti Rafa Amirah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Driyanti Rahayu
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia
| |
Collapse
|
2
|
Wahyuni I, Aulifa DL, Rosdianto AM, Levita J. The pharmacology activities of Angelica keiskei Koidzumi and its efficacy and safety in humans. Heliyon 2024; 10:e24119. [PMID: 38357325 PMCID: PMC10865877 DOI: 10.1016/j.heliyon.2024.e24119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic exposure to elevated levels of pro-oxidant factors may cause structural failings at the mitochondrial DNA level and alteration of antioxidant enzymes (glutathione peroxidase, catalase, and superoxide dismutase). Oxidative stress is an imbalance between the capacity of endogenous non-enzymatic antioxidants (glutathione, alpha-lipoic acid, uric acid, ferritin, metallothionein, melatonin, and bilirubin) and the occurrence of pro-oxidant factors which may lead to the pathogenesis of various diseases that affects the kidneys, pancreas, central nervous system, and cardiovascular system. Therefore, the utilization of medicinal plants with antioxidant activity, e.g., Angelica keiskei Koidzumi which contains chalcones, is interesting to be explored. Chalcones exhibit direct and indirect antioxidant activity and prevent oxidative stress by decreasing ROS, RNS, and superoxide production. In this review, we discuss the pharmacology activities of A. keiskei Koidzumi and its efficacy in humans. The articles were explored on PubMed and Google Scholar databases and based on the titles and abstracts related to the topic of interest, and 55 articles were selected. Two main chalcones of this plant, 4-hydroxyderricin and xanthoangelol, have been reported for their various pharmacology activities. The efficacy of A. keiskei was confirmed in anti-obesity, hepatoprotective, anti-diabetes mellitus, and increasing plasma antioxidants in patients with metabolic syndrome. A keiskei is safe as proven by only mild or no adverse events reported, thus it is prospective to be further developed as an antioxidant nutraceutical.
Collapse
Affiliation(s)
- Ika Wahyuni
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
- Faculty of Health, Universitas Nahdlatul Ulama, Mataram, West Nusa Tenggara, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Aziiz Mardanarian Rosdianto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Jafari M, Schriner SE, Kil YS, Pham ST, Seo EK. Angelica keiskei Impacts the Lifespan and Healthspan of Drosophila melanogaster in a Sex and Strain-Dependent Manner. Pharmaceuticals (Basel) 2023; 16:ph16050738. [PMID: 37242522 DOI: 10.3390/ph16050738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Angelica keiskei is a perennial plant, belonging to the Apiaceae family and originating from Japan. This plant has been reported to act as a diuretic, analeptic, antidiabetic, hypertensive, tumor, galactagogue, and laxative. The mechanism of action of A. keiskei is not known, but previous studies have suggested that it may act as an antioxidant. In this work, we used Drosophila melanogaster to evaluate the impact of A. keiskei on lifespan and healthspan and its potential anti-aging mechanism by conducting multiple assays on three fly strains: w1118, chico, and JIV. We observed that the extract extended lifespan and improved healthspan in a sex- and strain-dependent manner. A. keiskei extended lifespan and improved reproductive fitness in female flies and either had no effect or decreased survival and physical performance in males. The extract protected against the superoxide generator paraquat in both sexes. These sex-specific effects suggest that A. keiskei may act through age-specific pathways such as the insulin and insulin-like growth factor signaling (IIS) pathways. Upon examination, we found that the increased survival of A. keiskei-fed females was dependent on the presence of the insulin receptor substrate chico, supporting the role of IIS in the action of A. keiskei.
Collapse
Affiliation(s)
- Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Samuel E Schriner
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Yun-Seo Kil
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sally T Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomed Pharmacother 2022; 150:113073. [PMID: 35658216 DOI: 10.1016/j.biopha.2022.113073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a well-known type of age-related dementia. The present study was conducted to investigate the effect of xanthoangelol against memory deficit and neurodegeneration associated with AD. Preliminarily, xanthoangelol produced neuroprotective effect against H2O2-induced HT-22 cells. Furthermore, effect of xanthoangelol against scopolamine-induced amnesia in mice was determined by intraperitoneally (i.p.) administering xanthoangelol (1, 10 and 20 mg/kg), 30 min prior to induction. Mice were administered scopolamine at a concentration of 1 mg/kg; i.p. for the induction of amnesia associated with AD. Xanthoangelol dose dependently reduced the symptoms of Alzheimer's disease as observed by the results obtained from the behavioral analysis performed using Morris water maze and Y-maze test. The immunohistochemical analysis suggested that xanthoangelol significantly improved Keap-1/Nrf-2 signaling pathway. It greatly reduced the effects of oxidative stress and showed improvement in the anti-oxidant enzyme such as GSH, GST, SOD and catalase. Additionally, xanthoangelol decreased the expression of transient receptor potential vanilloid 1 (TRPV-1), a nonselective cation channel, involved in synaptic plasticity and memory. It activated the anti-oxidants and attenuated the apoptotic (Bax/Bcl-2) pathway. Xanthoangelol also significantly attenuated the scopolamine-induced neuroinflammation by the inhibition of interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α) levels. The histological analysis, showed a significant reduction in amyloid plaques by xanthoangelol. Therefore, the present study indicated that xanthoangelol has the ability to ameliorate the AD symptoms by attenuating neuroinflammation and neurodegeneration induced by scopolamine.
Collapse
|
5
|
Oh HA, Lee H, Park SY, Lim Y, Kwon O, Kim JY, Kim D, Jung BH. Analysis of plasma metabolic profiling and evaluation of the effect of the intake of Angelica keiskei using metabolomics and lipidomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112058. [PMID: 31283957 DOI: 10.1016/j.jep.2019.112058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica keiskei contains many bioactive components with anti-oxidative and anti-inflammatory effects. It is also effective for the treatment of diabetes mellitus, hypertension, and arteriosclerosis, but the relationships between these effects and the active components in the herb have not been studied. AIM OF THE STUDY We aimed to confirm the effects of Angelica keiskei on humans. MATERIALS AND METHODS A metabolomics and lipidomics study was performed using human plasma samples from 20 subjects after the intake of Angelica keiskei, and the components of Angelica keiskei in the plasma were profiled. UPLC-Orbitrap-MS was used to analyze the plasma and plant extracts, and multivariate analysis and correlation studies between the exogenous components from plant and endogenous metabolite in plasma were performed. RESULTS The levels of the 14 metabolites including kynurenic acid, prostaglandin E1, chenodeoxycholic acid, lysoPC (18:1), lysoPC (18:2), lysoPC (20:3), lysoPC (20:4), lysoPC (22:6), PC (34:1), PC (34:2), PC (38:3), PC (38:4), PC (38:6) and PC (40:7) in the plasma were changed. By monitoring the components originating from Angelica keiskei in plasma, five components including 5-methoxypsoralen, 8-methoxypsoralen, 4-hydroxyderricin, xanthoangelol B and xanthoangelol F were detected and they reduced the levels of bile acids and fatty acids. CONCLUSIONS The levels of the metabolites, including bile acids, amino acids, glycerophospholipids and fatty acids, in the plasma were changed, and 14 significantly changed metabolites were closely related to the preventive effect against liver diseases, type 2 diabetes, anemia, obesity, atherosclerosis, depression and anti-inflammatory effects. The five components of Angelica keiskei were related the modulatory activity of reducing the levels of bile acids and fatty acids.
Collapse
Affiliation(s)
- Hyun-A Oh
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Kil YS, Pham ST, Seo EK, Jafari M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch Pharm Res 2017; 40:655-675. [PMID: 28439780 PMCID: PMC7090720 DOI: 10.1007/s12272-017-0892-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023]
Abstract
Angelica keiskei (Miq.) Koidz. (Umbelliferae) has traditionally been used to treat dysuria, dyschezia, and dysgalactia as well as to restore vitality. Recently, the aerial parts of A. keiskei have been consumed as a health food. Various flavonoids, coumarins, phenolics, acetylenes, sesquiterpene, diterpene, and triterpenes were identified as the constituents of A. keiskei. The crude extracts and pure constituents were proven to inhibit tumor growth and ameliorate inflammation, obesity, diabetics, hypertension, and ulcer. The extract also showed anti-thrombotic, anti-oxidative, anti-hyperlipidemic, anti-viral, and anti-bacterial activities. This valuable herb needs to be further studied and developed not only to treat these human diseases but also to improve human health. Currently A. keiskei is commercialized as a health food and additives in health drinks. This article presents a comprehensive review of A. keiskei and its potential place in the improvement of human health.
Collapse
Affiliation(s)
- Yun-Seo Kil
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sally T Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|