1
|
Cho MK, Lee BT, Kim HU, Oh MK. Systems metabolic engineering of Streptomyces venezuelae for the enhanced production of pikromycin. Biotechnol Bioeng 2022; 119:2250-2260. [PMID: 35445397 DOI: 10.1002/bit.28114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Pikromycin is an important precursor of drugs, for example, erythromycin. Hence, systems metabolic engineering for the enhanced pikromycin production can contribute to the development of pikromycin-related drugs. In this study, metabolic genes in Streptomyces venezuelae were systematically engineered for the enhanced pikromycin production. For this, a genome-scale metabolic model of S. venezuelae was reconstructed and simulated, which led to the selection of 11 metabolic gene targets. These metabolic genes, including four overexpression targets and seven knockdown targets, were individually engineered first. Next, two overexpression targets and two knockdown targets were selected based on the 11 strains' production performances in order to engineer two to four of these genes together for the potential synergistic effects on the pikromycin production. As a result, the NM1 strain with AQF52_RS24510 (methenyltetrahydrofolate cyclohydrolase/methylenetetrahydrofolate dehydrogenase) overexpression and AQF52_RS30320 (sulfite reductase) knockdown showed the best production performance among all the 22 strains constructed in this study. Fed-batch fermentation of the NM1 strain produced 295.25 mg/L of pikromycin, by far the best production titer using the native producer S. venezuelae, to the best of our knowledge. The systems metabolic engineering strategy demonstrated herein can also be applied to the overproduction of other secondary metabolites using S. venezuelae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Kyung Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Tae Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
3
|
Gren T, Whitford CM, Mohite OS, Jørgensen TS, Kontou EE, Nielsen JB, Lee SY, Weber T. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Sci Rep 2021; 11:18301. [PMID: 34526549 PMCID: PMC8443760 DOI: 10.1038/s41598-021-97571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.
Collapse
Affiliation(s)
- Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020; 11:590522. [PMID: 33250877 PMCID: PMC7674664 DOI: 10.3389/fmicb.2020.590522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Dhakal D, Han JM, Mishra R, Pandey RP, Kim TS, Rayamajhi V, Jung HJ, Yamaguchi T, Sohng JK. Characterization of Tailoring Steps of Nargenicin A1 Biosynthesis Reveals a Novel Analogue with Anticancer Activities. ACS Chem Biol 2020; 15:1370-1380. [PMID: 32208643 DOI: 10.1021/acschembio.9b01034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nargenicin A1(1) is an antibacterial macrolide with effective activity against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Due to the promising properties of this compound in inhibiting cell proliferation, immunomodulation, and the cell protective effect, there has been significant interest in this molecule. Recently, the biosynthetic gene cluster (BGC) of 1 was reported from Nocardia argentinesis and Nocardia arthritidis. In addition, two crucial enzymes involved in the formation of the core decalin moiety and postmodification of the decalin moiety by an ether bridge were characterized. This study reports on the BGC of 1 from Nocardia sp. CS682. In addition, the direct capture and heterologous expression of nar BGC from Nocardia sp. CS682 in Streptomyces venezuelae led to the production of 1. Further metabolic profiling of wild type, Nocardia sp. CS682 in optimized media (DD media) resulted in the isolation of two acetylated derivatives, 18-O-acetyl-nodusmicin and 18-O-acetyl-nargenicin. The post-PKS modification pathway in biosynthesis of 1 was also deciphered by identifying intermediates and/or in vitro enzymatic reactions of NgnP1, NgnM, and NgnO3. Different novel analogues of 1, such as compound 6, compound 7, 23-demethyl 8,13-deoxy-nodusmicin (8), 23-demethyl 8,13-deoxynargenicin (9), 8,13-deoxynodusmicin (10), and 8,13-deoxynargenicin (11), were also characterized, which extended our understanding of key post-PKS modification steps during the biosynthesis of 1. In addition, the antimicrobial and anticancer activities of selected analogues were also evaluated, whereas compound 9 was shown to exhibit potent antitumor activity by induction of G2/M cell cycle arrest, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Jang Mi Han
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Ravindra Mishra
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Vijay Rayamajhi
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| |
Collapse
|
6
|
Kim W, Lee N, Hwang S, Lee Y, Kim J, Cho S, Palsson B, Cho BK. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules 2020; 10:biom10060864. [PMID: 32516997 PMCID: PMC7357120 DOI: 10.3390/biom10060864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/02/2023] Open
Abstract
Streptomyces venezuelae is well known to produce various secondary metabolites, including chloramphenicol, jadomycin, and pikromycin. Although many strains have been classified as S. venezuelae species, only a limited number of strains have been explored extensively for their genomic contents. Moreover, genomic differences and diversity in secondary metabolite production between the strains have never been compared. Here, we report complete genome sequences of three S. venezuelae strains (ATCC 10712, ATCC 10595, and ATCC 21113) harboring chloramphenicol and jadomycin biosynthetic gene clusters (BGC). With these high-quality genome sequences, we revealed that the three strains share more than 85% of total genes and most of the secondary metabolite biosynthetic gene clusters (smBGC). Despite such conservation, the strains produced different amounts of chloramphenicol and jadomycin, indicating differential regulation of secondary metabolite production at the strain level. Interestingly, antagonistic production of chloramphenicol and jadomycin was observed in these strains. Through comparison of the chloramphenicol and jadomycin BGCs among the three strains, we found sequence variations in many genes, the non-coding RNA coding regions, and binding sites of regulators, which affect the production of the secondary metabolites. We anticipate that these genome sequences of closely related strains would serve as useful resources for understanding the complex secondary metabolism and for designing an optimal production process using Streptomyces strains.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Jihun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-2660
| |
Collapse
|
7
|
Kim W, Hwang S, Lee N, Lee Y, Cho S, Palsson B, Cho BK. Transcriptome and translatome profiles of Streptomyces species in different growth phases. Sci Data 2020; 7:138. [PMID: 32385251 PMCID: PMC7210306 DOI: 10.1038/s41597-020-0476-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
Streptomyces are efficient producers of various bioactive compounds, which are mostly synthesized by their secondary metabolite biosynthetic gene clusters (smBGCs). The smBGCs are tightly controlled by complex regulatory systems at transcriptional and translational levels to effectively utilize precursors that are supplied by primary metabolism. Thus, dynamic changes in gene expression in response to cellular status at both the transcriptional and translational levels should be elucidated to directly reflect protein levels, rapid downstream responses, and cellular energy costs. In this study, RNA-Seq and ribosome profiling were performed for five industrially important Streptomyces species at different growth phases, for the deep sequencing of total mRNA, and only those mRNA fragments that are protected by translating ribosomes, respectively. Herein, 12.0 to 763.8 million raw reads were sufficiently obtained with high quality of more than 80% for the Phred score Q30 and high reproducibility. These data provide a comprehensive understanding of the transcriptional and translational landscape across the Streptomyces species and contribute to facilitating the rational engineering of secondary metabolite production.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark.
- Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Li Z, Jiang Y, Zhang X, Chang Y, Li S, Zhang X, Zheng S, Geng C, Men P, Ma L, Yang Y, Gao Z, Tang YJ, Li S. Fragrant Venezuelaenes A and B with A 5–5–6–7 Tetracyclic Skeleton: Discovery, Biosynthesis, and Mechanisms of Central Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01575] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl Microbiol Biotechnol 2019; 104:713-724. [PMID: 31820068 DOI: 10.1007/s00253-019-10262-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Zincphyrin IV is a potential organic photosensitizer which is of significant interest for applications in biomedicine, materials science, agriculture (as insecticide), and chemistry. Most studies on Zincphyrin are focused on Zincphyrin III while biosynthesis and application of Zincphyrin IV is comparatively less explored. In this study, we explored Zincphyrin IV production in Streptomyces venezuelae ATCC 15439 through combination of morphology engineering and "One strain many compounds" approach. The morphology engineering followed by change in culture medium led to activation of cryptic Zincphyrin IV biosynthetic pathway in S. venezuelae with subsequent detection of Zincphyrin IV. Morphology engineering applied in S. venezuelae increased the biomass from 7.17 to 10.5 mg/mL after 48 h of culture. Moreover, morphology of engineered strain examined by SEM showed reduced branching and fragmentation of mycelia. The distinct change in color of culture broth visually demonstrated the activation of the cryptic biosynthetic pathway in S. venezuelae. The production of Zincphyrin IV was found to be initiated after overexpression ssgA, resulting in the increase in titer from 4.21 to 7.54 μg/mL. Furthermore, Zincphyrin IV demonstrated photodynamic antibacterial activity against Bacillus subtilis and photodynamic anticancer activity against human ovarian carcinoma cell lines.
Collapse
|
10
|
Prevalence of antibiotic resistant mastitis pathogens in dairy cows in Egypt and potential biological control agents produced from plant endophytic actinobacteria. Saudi J Biol Sci 2019; 26:1492-1498. [PMID: 31762615 PMCID: PMC6864200 DOI: 10.1016/j.sjbs.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Dairy production is threatened by antibiotic resistant pathogens worldwide, and alternative solutions to treat mastitis are not available. The prevalence of antibiotic resistant strains is not well known in less developed countries. The prevalence of pathogenic bacteria and their resistance to 21 commercial antibiotics were studied in milk samples taken from 122 dairy cows suffering from the symptoms of mastitis in Egypt. The bacterial species were identified with molecular methods, and antibiotic resistance was studied with disc diffusion method. The prevalence of Streptococcus aureus, Escherichia coli and Pseudomonas aeruginosa were 30%, 17% and 3.5%, respectively. Most (90%) of the S. aureus strains showed resistance to penicillin whereas only 10% of the strains were resistant to oxacillin. Nearly half (40%) of E. coli strains showed resistance to streptomycin. Six P. aeruginosa strains showed resistance to several antibiotics, including ceftriaxone, enrofloxacin and levofloxacin. This points out that despite P. aeruginosa was not common, it should be followed up carefully. Potential biocontrol agents against antibiotic resistant mastitis bacteria were searched among 30 endophytic actinobacterial strains derived from wild medicinal plants. Three plants, namely Mentha longifolia, Malva parviflora and Pulicaria undulata were chosen for a more detailed study; their endophytic actinobacteria were used to prepare metabolic extracts. The crude metabolites of the actinobacteria were extracted with ethyl acetate. All metabolic extracts inhibited the growth of S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), E. coli and P. aeruginosa in vitro. The 16S rRNA sequence analysis revealed that the most efficient actinobacterial strains were two Micromonospora sp. and one Actinobacteria bacterium. We conclude that the combination of the metabolites of several endophytic actinobacteria derived from several medicinal plants would be the most efficient against pathogens. Different metabolite cocktails should be studied further in order to develop novel biocontrol agents to treat antibiotic resistant mastitis bacteria in dairy cows.
Collapse
|
11
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
12
|
Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019; 103:7097-7110. [DOI: 10.1007/s00253-019-10005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023]
|
13
|
Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W. Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 2019; 103:6645-6655. [PMID: 31240365 DOI: 10.1007/s00253-019-09970-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB, the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB. The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
14
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
15
|
Growth and differentiation properties of pikromycin-producing Streptomyces venezuelae ATCC15439. J Microbiol 2019; 57:388-395. [PMID: 30721456 DOI: 10.1007/s12275-019-8539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.
Collapse
|
16
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
17
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
18
|
Tan GY, Deng K, Liu X, Tao H, Chang Y, Chen J, Chen K, Sheng Z, Deng Z, Liu T. Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in Streptomyces. ACS Synth Biol 2017; 6:995-1005. [PMID: 28264562 DOI: 10.1021/acssynbio.6b00330] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advent of the genomics era, heterologous gene expression has been used extensively as a means of accessing natural products (NPs) from environmental DNA samples. However, the heterologous production of NPs often has very low efficiency or is unable to produce targeted NPs. Moreover, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in native producers, especially in the cases of genome mining, it is also difficult to rationally and systematically engineer synthetic pathways to improved NPs biosynthetic efficiency. In this study, various strategies ranging from heterologous production of a NP to subsequent application of omics-guided synthetic modules optimization for efficient biosynthesis of NPs with complex structure have been developed. Heterologous production of spinosyn in Streptomyces spp. has been demonstrated as an example of the application of these approaches. Combined with the targeted omics approach, several rate-limiting steps of spinosyn heterologous production in Streptomyces spp. have been revealed. Subsequent engineering work overcame three of selected rate-limiting steps, and the production of spinosad was increased step by step and finally reached 1460 μg/L, which is about 1000-fold higher than the original strain S. albus J1074 (C4I6-M). These results indicated that the omics platform developed in this work was a powerful tool for guiding the rational refactoring of heterologous biosynthetic pathway in Streptomyces host. Additionally, this work lays the foundation for further studies aimed at the more efficient production of spinosyn in a heterologous host. And the strategy developed in this study is expected to become readily adaptable to highly efficient heterologous production of other NPs with complex structure.
Collapse
Affiliation(s)
- Gao-Yi Tan
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State
Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kunhua Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Xinhua Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Hui Tao
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yingying Chang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Jia Chen
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kai Chen
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zhi Sheng
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiangang Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
19
|
Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol 2017; 134:56-73. [DOI: 10.1016/j.bcp.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
20
|
Kim E, Song MC, Kim MS, Beom JY, Jung JA, Cho HS, Yoon YJ. One-Pot Combinatorial Biosynthesis of Glycosylated Anthracyclines by Cocultivation of Streptomyces Strains Producing Aglycones and Nucleotide Deoxysugars. ACS COMBINATORIAL SCIENCE 2017; 19:262-270. [PMID: 28191923 DOI: 10.1021/acscombsci.6b00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anthracyclines, such as doxorubicin, are effective anticancer drugs composed of a tetracyclic polyketide aglycone and one or more deoxysugar moieties, which play a critical role in their biological activity. A facile one-pot combinatorial biosynthetic system was developed for the generation of a range of glycosylated derivatives of anthracyclines. Cocultivation of Streptomyces venezuelae mutants producing two anthracycline aglycones with eight different nucleotide deoxysugar-producing S. venezuelae mutants that coexpress a substrate-flexible glycosyltransferase led to the generation of 16 aklavinone or ε-rhodomycinone glycosides containing diverse deoxysugar moieties, seven of which are new. This demonstrates the potential of the one-pot combinatorial biosynthetic system based on cocultivation as a facile biological tool capable of combining diverse aglycones and deoxysugars to generate structurally diverse polyketides carrying engineered sugars for drug discovery and development.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Myoung Chong Song
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Myoun Su Kim
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Yoon Beom
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Jin A Jung
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Hang Soo Cho
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and
Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
22
|
Yin S, Li Z, Wang X, Wang H, Jia X, Ai G, Bai Z, Shi M, Yuan F, Liu T, Wang W, Yang K. Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl Microbiol Biotechnol 2016; 100:10563-10572. [PMID: 27709288 DOI: 10.1007/s00253-016-7873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and manipulate the oxytetracycline (OTC) gene cluster and to alter OTC fermentation process. To achieve these goals, a fast-growing heterologous host Streptomyces venezuelae WVR2006 was rationally selected among several potential hosts. It shows rapid and dispersed growth and intrinsic high resistance to OTC. By manipulating the expression of two cluster-situated regulators (CSR) OtcR and OtrR and precursor supply, the OTC production level was significantly increased in this heterologous host from 75 to 431 mg/l only in 48 h, a level comparable to the native producer Streptomyces rimosus M4018 in 8 days. This work shows that S. venezuelae WVR2006 is a promising chassis for the production of secondary metabolites, and the engineered heterologous OTC producer has the potential to completely alter the fermentation process of OTC production.
Collapse
Affiliation(s)
- Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Huizhuan Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zishang Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Tiejun Liu
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
23
|
Escher SKS, Sousa Júnior JJVD, Dias AL, Amorim ELCD, Araújo JMD. Influence of glucose and stirring in the fermentation process in order to produce anti- Candida metabolites produced by Streptomyces sp. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study evaluated the influence of glucose and stirring in the fermentation process in order to produce anti-Candida metabolites produced by Streptomyces sp. MPO4 isolated from Amazon soil. The anti-Candida metabolites production was registered after 24 h of fermentation in stirred ISP2 medium, having antifungal inhibition halos between 12.3 mm and 25.3 mm, yielding higher production of anti-Candida agents after 96 h. Stirring was a determining factor for the production of anti-Candida secondary metabolites, since the absence of glucose reflected in the late production of the antifungal starting from Streptomyces sp.
Collapse
|
24
|
Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00337-16. [PMID: 27151802 PMCID: PMC4859184 DOI: 10.1128/genomea.00337-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters.
Collapse
|
25
|
He J, Van Treeck B, Nguyen HB, Melançon CE. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439. ACS Synth Biol 2016; 5:125-32. [PMID: 26562751 DOI: 10.1021/acssynbio.5b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development.
Collapse
Affiliation(s)
- Jingxuan He
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Briana Van Treeck
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Han B. Nguyen
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Charles E. Melançon
- Department of Chemistry and Chemical Biology, ‡Department of Biology, and §Center for Biomedical
Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
26
|
Song JY, Yoo YJ, Lim SK, Cha SH, Kim JE, Roe JH, Kim JF, Yoon YJ. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J Biotechnol 2015; 219:57-8. [PMID: 26718561 DOI: 10.1016/j.jbiotec.2015.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
Abstract
Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.
Collapse
Affiliation(s)
- Ju Yeon Song
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Ji Yoo
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si-Kyu Lim
- GenoTech Corporation, 26-69 Gajeongbuk-ro, Daejeon 34113, Republic of Korea
| | - Sun Ho Cha
- GenoTech Corporation, 26-69 Gajeongbuk-ro, Daejeon 34113, Republic of Korea
| | - Ji-Eun Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jung-Hye Roe
- School of Biological Sciences and Institute of Microbiology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Strategic Initiative for Microbiomes in Agriculture and Food, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|