1
|
Wu Y, Luo J, Xu B. Insights into the anticancer effects of galangal and galangin: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156085. [PMID: 39353308 DOI: 10.1016/j.phymed.2024.156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUNDS Cancer continues to be the leading cause of death worldwide, significantly impacting both health and the economy. Natural products have emerged as promising sources for the development of new anticancer drugs, with galangal and their active ingredient, galangin, garnering substantial interest. PURPOSE This study summarizes recent findings on the anticancer properties of galangal and galangin, highlighting their potential to target various cancer types. METHODS We systematically searched the literature across PubMed, Web of Science, and Google Scholar, using keywords such as "Alpinia officinarum," "Alpinia galanga", "galangal," and "galangin." This thorough approach allowed us to gather and compile a comprehensive collection of existing research on the topic. RESULTS This article provided a thorough analysis of the distribution of galangal, the methods used to extract the active compounds of galangal, and the anticancer properties of both galangin and galangal. It is important to note that galangal and galangin primarily function by regulating the signaling pathways of PI3K/Akt, MAPK, AMPK, p53, NF-κB, and Ras/RAF/MEK/ERK, which in turn triggers apoptosis, autophagy, and ROS while preventing the migration and invasion of cancer cells. We also discussed their toxicity, bioavailability, and clinical uses. CONCLUSION In conclusion, galangal extract and galangin have a lot of promise for treating cancer. It is anticipated that this review will further advance the use of galangal extract and galangin as potential cancer treatment medications. Moreover, the discovery and development of drugs based on galangal has enormous potential for the therapy of cancer.
Collapse
Affiliation(s)
- Yingzi Wu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
| |
Collapse
|
2
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
3
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
4
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
6
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Extract of Alnus japonica prevents dexamethasone-induced muscle atrophy in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
8
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
9
|
Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:nu14030619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. Methods: The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. Results: More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. Conclusion: A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
|
10
|
Chan ZY, Krishnan P, Hii LW, Mai CW, Leong CO, Low YY, Wong SK, Ting KN, Yong KT, Lim KH. Unusual diarylheptanoid-phenylpropanoid adducts and diarylheptanoid alkaloids from Pellacalyx saccardianus. PHYTOCHEMISTRY LETTERS 2021. [DOI: 10.1016/j.phytol.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Lee MY, Haam CE, Mun J, Lim G, Lee BH, Oh KS. Development of a FOXM1-DBD Binding Assay for High-Throughput Screening Using TR-FRET Assay. Biol Pharm Bull 2021; 44:1484-1491. [PMID: 34602556 DOI: 10.1248/bpb.b21-00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophoretic mobility shift assay (EMSA) technology has been widely employed for the analysis of transcription factors such as Forkhead box protein M1 (FOXM1). However, the application of high-throughput screening (HTS) in performing, such analyses are limited as it uses time consuming electrophoresis procedure and radioisotopes. In this study, we developed a FOXM1-DNA binding domain (DBD) binding assay based on time-resolved fluorescence energy transfer (TR-FRET) that enables HTS for the inhibitors of FOXM1-DNA interaction. This assay was robust, highly reproducible and could be easily miniaturized into 384-well plate format. The signal-to-background (S/B) ratio and Z' factor were calculated as 7.46 and 0.74, respectively, via a series of optimization of the assay conditions. A pilot library screening of 1019 natural compounds was performed using the FOXM1-DBD binding assay. Five hit compounds, namely, AC1LXM, BRN5, gangaleoidin, leoidin, and roemerine were identified as the inhibitors of FOXM1. In a cell viability assay, it was demonstrated that cell proliferation of FOXM1 overexpressed cell lines was suppressed in cell lines such as MDA-MB-231 and MCF-7 by five hit compounds. These results indicate that developed FOXM1-DBD binding assay can be applied to highly efficiency HTS of compound libraries.
Collapse
Affiliation(s)
- Mi Young Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Chae Eun Haam
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Jihye Mun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Gyutae Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Byung Ho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
12
|
Lea CS, Simhadri C, Bradbury SG, Wulff JE, Constabel CP. Efficient purification of the diarylheptanoid oregonin from red alder (Alnus rubra) leaves and bark combining aqueous extraction, spray drying and flash-chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:554-561. [PMID: 33094496 DOI: 10.1002/pca.3005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The diarylheptanoid xyloside oregonin ((5S)-1,7-bis(3,4-dihydroxyphenyl)-5-(β-d-xylopyranosyloxy)-heptan-3-one) has significant medicinal potential and is found at high concentration in leaves and bark of red alder (Alnus rubra). OBJECTIVES To establish inexpensive and easily scaled methods for the extraction and purification of oregonin from timber by-products. METHODS We developed a method combining aqueous extraction with spray drying of red alder extract into a powder, thus reducing the need for organic solvents used in traditional Soxhlet extraction or in solvent partitioning. Flash chromatography was utilised to purify oregonin from crude spray-dried alder extract. RESULTS Crude spray-dried alder extract was comprised of an average of 9% of the diarylheptanoid compound oregonin. Less than 10% thermal degradation of oregonin was observed using extraction temperatures between 25°C and 50°C, followed by spray drying. The structure of purified oregonin was validated using high-performance liquid chromatography (HPLC), mass spectrometry (MS), ultraviolet spectroscopy (UV), and nuclear magnetic resonance (NMR). CONCLUSION The developed method was robust, repeatable, and yielded purified oregonin of greater than > 95% purity (average of 95.8%). Our analysis represents the most complete NMR characterisation of oregonin reported to date.
Collapse
Affiliation(s)
- Carmen S Lea
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, B.C., Canada
- Ecosafe Natural Products Inc, Saanichton, B.C, Canada
| | | | | | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, B.C, Canada
| | - C Peter Constabel
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, B.C., Canada
| |
Collapse
|
13
|
PlatyphyllenoneExerts Anti-Metastatic Effects on Human Oral Cancer Cells by Modulating Cathepsin L Expression, MAPK Pathway and Epithelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22095012. [PMID: 34065077 PMCID: PMC8125947 DOI: 10.3390/ijms22095012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced-stage oral cancers with lymph node metastasis are associated with poor prognosis and a high mortality rate. Although recent advancement in cancer treatment has effectively improved the oral cancer prognosis, the majority of therapeutic interventions are highly expensive and are associated with severe sideeffects. In the present study, we studied the efficacy of a diarylheptanoid derivative, platyphyllenone, in modulating the metastatic potential of human oral cancer cells. Specifically, we treated the human oral cancer cells (FaDu, Ca9-22, and HSC3) with different concentrations of platyphyllenone and measured the cell proliferation, migration, and invasion. The study findings revealed that platyphyllenonesignificantly inhibited the motility, migration, and invasion of human oral cancer cells. Mechanistically, platyphyllenone reduced p38 phosphorylation, decreased β-catenin and Slug, increased E-cadherin expression, and reduced cathepsin L expression, which collectively led to a reduction in cancer cell migration and invasion. Taken together, our study indicates that platyphyllenone exerts significant anti-metastatic effects on oral cancer cells by modulating cathepsin L expression, the MAPK signaling pathway, and the epithelial-mesenchymal transition process.
Collapse
|
14
|
Platyphyllenone Induces Autophagy and Apoptosis by Modulating the AKT and JNK Mitogen-Activated Protein Kinase Pathways in Oral Cancer Cells. Int J Mol Sci 2021; 22:ijms22084211. [PMID: 33921647 PMCID: PMC8074098 DOI: 10.3390/ijms22084211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.
Collapse
|
15
|
Gamre S, Tyagi M, Chatterjee S, Patro BS, Chattopadhyay S, Goswami D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:352-363. [PMID: 33587631 DOI: 10.1021/acs.jnatprod.0c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient synthesis of the Alpinia officinarum-derived diarylheptanoids, viz., enantiomers of a β-hydroxyketone (1) and an α,β-unsaturated ketone (2) was developed starting from commercially available eugenol. Among these, compound 2 showed a superior antiproliferative effect against human breast adenocarcinoma MCF-7 cells. Besides reducing clonogenic cell survival, compound 2 dose-dependently increased the sub G1 cell population and arrested the G2-phase of the cell cycle, as revealed by flow cytometry. Mechanistically, compound 2 acts as an intracellular pro-oxidant by generating copious amounts of reactive oxygen species. Compound 2 also induced both loss of mitochondrial membrane potential (MMP) as well as lysosomal membrane permeabilization (LMP) in the MCF-7 cells. The impaired mitochondrial and lysosomal functions due to reactive oxygen species (ROS)-generation by compound 2 may contribute to its apoptotic property.
Collapse
Affiliation(s)
- Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Sucheta Chatterjee
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| | | | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| |
Collapse
|
16
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
17
|
Anti-Herbivore Activity of Oregonin, a Diarylheptanoid Found in Leaves and Bark of Red Alder (Alnus rubra). J Chem Ecol 2021; 47:215-226. [PMID: 33475940 DOI: 10.1007/s10886-021-01244-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Plants synthesize a wide range of bioactive secondary metabolites to defend against pests and pathogens. Red alder (Alnus rubra) bark, root, and leaf extract have a long history of use in traditional medicine and hygiene. Diarylheptanoids, especially oregonin ((5S)-1,7-bis(3,4-dihydroxyphenyl)-5-(β-D-xylopyranosyloxy)-heptan-3-one), have been identified as major bioactive constituents. Diarylheptanoids have become a focus of research following reports of their antioxidant, antifungal, and anti-cancer activities. Recent data suggest that high oregonin concentration is associated with resistance of red alder leaves to western tent caterpillar (Malacosoma californicum) defoliation. Here we test effects of this compound directly on leaf-eating insects. Purified oregonin was examined in insect choice and toxicity tests using lepidopteran caterpillars. The compound exhibited significant anti-feedant activity against cabbage looper (Trichoplusia ni), white-marked tussock moth (Orgyia leucostigma), fall webworm (Hyphantria cunea), and M. californicum at concentrations corresponding to oregonin content of the most resistant alder clones in previous experiments. Toxicity tests were carried out with cabbage looper larvae only, but no contact or ingested toxicity was detected. Our results suggest that oregonin at levels found in red alder leaves early in the growing season may contribute to protecting red alder from leaf-eating insects.
Collapse
|
18
|
Wang Y, Wang H, Yan Z, Li G, Hu G, Zhang H, Huang D, Wang Y, Zhang X, Yan Y, Lu Q, Cheng M, Luo S. The critical role of dysregulated Hh-FOXM1-TPX2 signaling in human hepatocellular carcinoma cell proliferation. Cell Commun Signal 2020; 18:116. [PMID: 32723329 PMCID: PMC7388463 DOI: 10.1186/s12964-020-00628-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aberrant activation of the Hedgehog (Hh) signaling pathway is frequently observed in hepatocellular carcinoma (HCC), nevertheless, the precise molecular mechanism remains unclear. Forkhead box M1 (FOXM1), a target of the Hh pathway, is a key oncofetal transcription factor and a master cell cycle regulator. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is an oncogene critical for mitosis. However, how these molecular events affect HCC progression remains unclear. Methods Realtime PCR, immunohistochemistry, western blotting, and analyses of datasets TCGA and Gene Expression Omnibus (GEO) were conducted to assess the expression of TPX2 and FOXM1 at the mRNA and protein levels in HCC samples or HCC cells. Expression and knockdown of TPX2 and FOXM1 were performed to assess their role in regulating HCC cell proliferation in vitro and in vivo. Dual luciferase report assay and chromosome immunoprecipitation (ChIP) were investigated to seek the FOXM1 binding sites in the promoter of TPX2. Results Specific antagonists (cyclopamine and GANT61) of the Hh pathway down-regulated TPX2, whereas activation of Hh signaling stimulated TPX2 expression. Furthermore, TPX2 over-expression accelerated HCC cell proliferation when upstream events of Hh signaling were inhibited, and TPX2 knockdown significantly alleviated Sonic Hh ligand (Shh)-induced HCC cell proliferation. Reporter assays and ChIP showed that FOXM1 bound to the TPX2 promoter, confirming that TPX2 is a direct downstream target of FOXM1. Xenograft model further verified the cell function and expression regulation of TPX2 and FOXM1 in vivo. Furthermore, FOXM1 regulated TPX2 activity to drive HCC proliferation. Immunohistochemical (IHC) analysis indicated that FOXM1 and TPX2 were highly-expressed in HCC samples and cohort study revealed that FOXM1 and TPX2 may act as negative predictors for the prognosis of patients with HCC. Conclusions TPX2 acts as a novel downstream target and effector of the Hh pathway, and Hh signaling contributes to HCC proliferation via regulating the FOXM1-TPX2 cascade, suggesting that this signaling axis may be a novel therapeutic target for HCC. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yiting Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhengwei Yan
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Guohua Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Guohui Hu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hong Zhang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Dengliang Huang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yao Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Shiwen Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
19
|
Chen X, Gao S, Zhao Z, Liang G, Kong J, Feng X. MicroRNA-320d regulates tumor growth and invasion by promoting FoxM1 and predicts poor outcome in gastric cardiac adenocarcinoma. Cell Biosci 2020; 10:80. [PMID: 32551039 PMCID: PMC7298787 DOI: 10.1186/s13578-020-00439-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Recent evidences demonstrate that dysregulated expression of microRNA-320d (miR-320d) has been associated with several cancer development and progression. However the effect of miR-320d on gastric cardiac adenocarcinoma (GCA) and the association of miR-320d with its potential gene target FoxM1 remain unclear. Here, we evaluated expression profile of miR-320d and FoxM1 in 60 human GCA tissues and GCA cell lines (OE-19 and SK-GT2). Immunohistochemistry, qualitative PCR and western-blotting were performed in GCA tissues to detect the expression level of miR-320d and FoxM1. CCK-8, transwell, wound-healing assays, and in vivo experiments were conducted using GCA cells that treated with miR-320d mimics or inhibitors to evaluate the biological functions of miR-320d. Luciferase reporter assay was conducted to confirm possible binding sites of FoxM1 for miR-320d. Compared with paired non-cancerous tissues, it showed that miR-320d expression was significantly decreased in GCA specimens (P < 0.0001), while FoxM1 was significantly upregulated in GCA tissues (P < 0.0001). Modulating miR-320d function by transfection of miR-320 mimics or inhibitor led to inhibition or promotion of GCA cell proliferation and invasion, thus regulating tumor progression in GCA-tumor bearing mice. The mechanism analysis of miR-320d/FoxM1 showed that FoxM1 has two miR-320d binding sites in its 3′-untranslated region (3′-UTR), that contributes to regulation of the cell biological behaviors. Taken together, our data suggested that miR-320d acts as a tumor suppressor in GCA by directly targeting FoxM1 and thus potentially serves as a biomarker for anti-GCA therapy in GCA patients.
Collapse
Affiliation(s)
- Xiaojie Chen
- Medical College, Henan University of Science and Technology, Luoyang, China.,China-US (Henan) Hormel Cancer Center, Zhengzhou, Henan 450008 China
| | - Shegan Gao
- Medical College, Henan University of Science and Technology, Luoyang, China.,The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 263, Kaiyuan Street, Luolong District, Luoyang, 471000 China.,Henan Key Laboratory of Cancer Epigenetics, Henan University of Science and Technology, Luoyang, China.,Cancer Institute, Henan University of Science and Technology, Luoyang, China
| | - Zhiwei Zhao
- Medical College, Henan University of Science and Technology, Luoyang, China.,The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 263, Kaiyuan Street, Luolong District, Luoyang, 471000 China
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Jinyu Kong
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 263, Kaiyuan Street, Luolong District, Luoyang, 471000 China
| | - Xiaoshan Feng
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 263, Kaiyuan Street, Luolong District, Luoyang, 471000 China.,Henan Key Laboratory of Cancer Epigenetics, Henan University of Science and Technology, Luoyang, China.,Cancer Institute, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
20
|
Jeong JH, Ryu JH. Broussoflavonol B from Broussonetia kazinoki Siebold Exerts Anti-Pancreatic Cancer Activity through Downregulating FoxM1. Molecules 2020; 25:E2328. [PMID: 32429421 PMCID: PMC7287790 DOI: 10.3390/molecules25102328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
21
|
Jung HJ, Song KS, Son YK, Seong JK, Kim SY, Oh SH. 1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one from Betula platyphylla induces apoptosis by suppressing autophagy flux and activating the p38 pathway in lung cancer cells. Phytother Res 2019; 34:126-138. [PMID: 31512302 DOI: 10.1002/ptr.6506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Betula platyphylla (BP) is frequently administered in the treatment of various human diseases, including cancers. This study was undertaken to investigate the pharmacological function of the active components in BP and the underlying mechanism of its chemotherapeutic effects in human lung cancer cells. We observed that BP extracts and 1,7-bis(4-hydroxyphenyl)-4-hepten-3-one (BE1), one of the components of BP, effectively decreased the cell viability of several lung cancer cell lines. BE1-treated cells exhibited apoptosis induction and cell cycle arrest at the G2/M phase. Further examination demonstrated that BE1 treatment resulted in suppression of autophagy, as evidenced by increased protein expression levels of both LC3 II and p62/SQSTM1. Interestingly, the pharmacological induction of autophagy with rapamycin remarkably reduced the BE1-induced apoptosis, indicating that apoptosis induced by BE1 was associated with autophagy inhibition. Our data also demonstrated that BE1 exposure activated the p38 pathway resulting in regulation of the pro-apoptotic activity. Taken together, we believe that BE1 is a potential anticancer agent for human lung cancer, which exerts its effect by enhancing apoptosis via regulating autophagy and the p38 pathway.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
22
|
Lee HJ, Jeong JH, Ryu JH. Anti-pancreatic cancer activity of Z-ajoene from garlic: An inhibitor of the Hedgehog/Gli/FoxM1 axis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Abubakar IB, Malami I, Yahaya Y, Sule SM. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:45-62. [PMID: 29803568 DOI: 10.1016/j.jep.2018.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. AIM OF THE STUDY The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. METHODS Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. RESULTS A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. CONCLUSION In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346 Sokoto, Nigeria.
| | - Yakubu Yahaya
- Department of Pure and Applied Chemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Sahabi Manga Sule
- Department of Biological Sciences, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| |
Collapse
|
24
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 2018; 16:57. [PMID: 30208972 PMCID: PMC6134757 DOI: 10.1186/s12964-018-0266-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
FOXM1 (forkhead box protein M1) is a critical proliferation-associated transcription factor that is widely spatiotemporally expressed during the cell cycle. It is closely involved with the processes of cell proliferation, self-renewal, and tumorigenesis. In most human cancers, FOXM1 is overexpressed, and this indicates a poor prognosis for cancer patients. FOXM1 maintains cancer hallmarks by regulating the expression of target genes at the transcriptional level. Due to its potential role as molecular target in cancer therapy, FOXM1 was named the Molecule of the Year in 2010. However, the mechanism of FOXM1 dysregulation remains indistinct. A comprehensive understanding of FOXM1 regulation will provide novel insight for cancer and other diseases in which FOXM1 plays a major role. Here, we summarize the transcriptional regulation, post-transcriptional regulation and post-translational modifications of FOXM1, which will provide extremely important implications for novel strategies targeting FOXM1.
Collapse
Affiliation(s)
- Guo-Bin Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Jian-Ying Bai
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| |
Collapse
|
25
|
Yang EJ, An JH, Son YK, Yeo JH, Song KS. The Cytotoxic Constituents ofBetula platyphyllaand their Effects on Human Lung A549 Cancer Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.4.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju-Hee An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Jin G, Sivaraman A, Lee K. Development of taladegib as a sonic hedgehog signaling pathway inhibitor. Arch Pharm Res 2017; 40:1390-1393. [PMID: 29159582 DOI: 10.1007/s12272-017-0987-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University, Goyang, 10326, Korea
| | | | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang, 10326, Korea.
| |
Collapse
|