1
|
Woodcock CL, Alsaleem M, Toss MS, Lothion-Roy J, Harris AE, Jeyapalan JN, Blatt N, Rizvanov AA, Miftakhova RR, Kariri YA, Madhusudan S, Green AR, Rutland CS, Fray RG, Rakha EA, Mongan NP. The role of the ALKBH5 RNA demethylase in invasive breast cancer. Discov Oncol 2024; 15:343. [PMID: 39127986 PMCID: PMC11317455 DOI: 10.1007/s12672-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most common internal RNA modification and is involved in regulation of RNA and protein expression. AlkB family member 5 (ALKBH5) is a m6A demethylase. Given the important role of m6A in biological mechanisms, m6A and its regulators, have been implicated in many disease processes, including cancer. However, the contribution of ALKBH5 to invasive breast cancer (BC) remains poorly understood. The aim of this study was to evaluate the clinicopathological value of ALKBH5 in BC. METHODS Publicly available data were used to investigate ALKBH5 mRNA alterations, prognostic significance, and association with clinical parameters at the genomic and transcriptomic level. Differentially expressed genes (DEGs) and enriched pathways with low or high ALKBH5 expression were investigated. Immunohistochemistry (IHC) was used to assess ALKBH5 protein expression in a large well-characterised BC series (n = 1327) to determine the clinical significance and association of ALKBH5 expression. RESULTS Reduced ALKBH5 mRNA expression was significantly associated with poor prognosis and unfavourable clinical parameters. ALKBH5 gene harboured few mutations and/or copy number alternations, but low ALKBH5 mRNA expression was seen. Patients with low ALKBH5 mRNA expression had a number of differentially expressed genes and enriched pathways, including the cytokine-cytokine receptor interaction pathway. Low ALKBH5 protein expression was significantly associated with unfavourable clinical parameters associated with tumour progression including larger tumour size and worse Nottingham Prognostic Index group. CONCLUSION This study implicates ALKBH5 in BC and highlights the need for further functional studies to decipher the role of ALKBH5 and RNA m6A methylation in BC progression.
Collapse
Affiliation(s)
- Corinne L Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Anna E Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jennie N Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nataliya Blatt
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Albert A Rizvanov
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Regina R Miftakhova
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Yousif A Kariri
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, 11961, Shaqra, Saudi Arabia
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rupert G Fray
- School of Biosciences, Plant Science Division, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
- Pathology Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nigel P Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Burton E, Ozer BH, Boris L, Brown D, Theeler B. Imipridones and Dopamine Receptor Antagonism in the Therapeutic Management of Gliomas. ADVANCES IN ONCOLOGY 2024; 4:101-110. [PMID: 38868646 PMCID: PMC11165802 DOI: 10.1016/j.yao.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Eric Burton
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 221, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Byram H. Ozer
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 217, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, USA
- NOB, Building 82, Room 203, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, NINDS, Bethesda, MD
- SNB, Building 10-CRC, Room 3D20, 10 Center Drive, Bethesda, MD 20814
| | - Brett Theeler
- Department of Neurology, Uniform Services University of the Health Sciences, Bethesda, MD.Department of Neurology, USUHS, 4301 Jones Bridge Road, Bethesda, MD. 20814
| |
Collapse
|
4
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Yan T, Yang H, Xu C, Liu J, Meng Y, Jiang Q, Li J, Kang G, Zhou L, Xiao S, Xue Y, Xu J, Chen X, Che F. Inhibition of hyaluronic acid degradation pathway suppresses glioma progression by inducing apoptosis and cell cycle arrest. Cancer Cell Int 2023; 23:163. [PMID: 37568202 PMCID: PMC10422813 DOI: 10.1186/s12935-023-02998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Abnormal hyaluronic acid (HA) metabolism is a major factor in tumor progression, and the metabolic regulation of HA mainly includes HA biosynthesis and catabolism. In glioma, abnormal HA biosynthesis is intimately involved in glioma malignant biological properties and the formation of immunosuppressive microenvironment; however, the role of abnormal HA catabolism in glioma remains unclear. METHODS HA catabolism is dependent on hyaluronidase. In TCGA and GEPIA databases, we found that among the 6 human hyaluronidases (HYAL1, HYAL2, HYAL3, HYAL4, HYALP1, SPAM1), only HYAL2 expression was highest in glioma. Next, TCGA and CGGA database were further used to explore the correlation of HYAL2 expression with glioma prognosis. Then, the mRNA expression and protein level of HYAL2 was determined by qRT-PCR, Western blot and Immunohistochemical staining in glioma cells and glioma tissues, respectively. The MTT, EdU and Colony formation assay were used to measure the effect of HYAL2 knockdown on glioma. The GSEA enrichment analysis was performed to explore the potential pathway regulated by HYAL2 in glioma, in addition, the HYAL2-regulated signaling pathways were detected by flow cytometry and Western blot. Finally, small molecule compounds targeting HYAL2 in glioma were screened by Cmap analysis. RESULTS In the present study, we confirmed that Hyaluronidase 2 (HYAL2) is abnormally overexpressed in glioma. Moreover, we found that HYAL2 overexpression is associated with multiple glioma clinical traits and acts as a key indicator for glioma prognosis. Targeting HYAL2 could inhibit glioma progression by inducing glioma cell apoptosis and cell cycle arrest. CONCLUSION Collectively, these observations suggest that HYAL2 overexpression could promote glioma progression. Thus, treatments that disrupt HA catabolism by altering HYAL2 expression may serve as effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - He Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Caixia Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jinxing Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Guiqiong Kang
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Liangjian Zhou
- Scientific Research Management Office, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Shuai Xiao
- Scientific Research Management Office, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Yanpeng Xue
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
- Department of Neurology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
6
|
Liu H, Huang Q, Fan Y, Li B, Liu X, Hu C. Dissecting the novel abilities of aripiprazole: The generation of anti-colorectal cancer effects by targeting G αq via HTR2B. Acta Pharm Sin B 2023; 13:3400-3413. [PMID: 37655314 PMCID: PMC10465950 DOI: 10.1016/j.apsb.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is a type of malignant tumor that seriously threatens human health and life, and its treatment has always been a difficulty and hotspot in research. Herein, this study for the first time reports that antipsychotic aripiprazole (Ari) against the proliferation of CRC cells both in vitro and in vivo, but with less damage in normal colon cells. Mechanistically, the results showed that 5-hydroxytryptamine 2B receptor (HTR2B) and its coupling protein G protein subunit alpha q (Gαq) were highly distributed in CRC cells. Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling. Blockade of HTR2B signaling suppressed the growth of CRC cells, but HTR2B was not found to have independent anticancer activity. Interestingly, the binding of Gαq to HTR2B was decreased after Ari treatment. Knockdown of Gαq not only restricted CRC cell growth, but also directly affected the anti-CRC efficacy of Ari. Moreover, an interaction between Ari and Gαq was found in that the mutation at amino acid 190 of Gαq reduced the efficacy of Ari. Thus, these results confirm that Gαq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation. Collectively, this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.
Collapse
Affiliation(s)
- Haowei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuming Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yunqi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| |
Collapse
|
7
|
Wei F, Li T, Li J, Zhang Y, Liu T, Zhao Z, Zhu W, Guo H, Yang R. Prognostic and Immunological Role of Asporin across Cancers and Exploration in Bladder Cancer. Gene 2023:147573. [PMID: 37336272 DOI: 10.1016/j.gene.2023.147573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Asporin (ASPN) has been identified as a player in tumorigenesis, but its precise roles and modulatory function are largely unknown. METHODS In the present study, ASPN expression was first explored, followed by a prognostic evaluation of ASPN and a comprehensive investigation of the connections between ASPN and immunomodulation, immune cell infiltration and potential compounds on a pancancer level. Finally, ASPN expression was validated in bladder urothelial carcinoma (BLCA) tissues, and the potential function of ASPN, including its effects on migration and invasion capabilities, was investigated in tumor cells. RESULTS The expression of ASPN exhibited significant variation across cancers and was found to be associated with patient prognosis. In addition, the expression level of APSN was markedly correlated with the abundances of infiltrating immune cells and cancer-associated fibroblasts and the expression levels of immunomodulatory genes based on the results of pancancer analysis. Metastasis and immune-associated signaling pathways were identified in enrichment analysis based on ASPN expression. Finally, we confirmed that ASPN expression increased with the degree of malignancy in BLCA tissues and cell lines and that low expression of ASPN hindered the migration and invasion of cells. CONCLUSIONS ASPN has the potential to be a biomarker of cancer prognosis and a therapeutic target, and it also has predictive capability for the progression of BLCA.
Collapse
Affiliation(s)
- Fayun Wei
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianhang Li
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiazheng Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Zhang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Rong Yang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Yoon S, Kim HS. First-Line Combination Treatment with Low-Dose Bipolar Drugs for ABCB1-Overexpressing Drug-Resistant Cancer Populations. Int J Mol Sci 2023; 24:ijms24098389. [PMID: 37176096 PMCID: PMC10179254 DOI: 10.3390/ijms24098389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumors include a heterogeneous population, of which a small proportion includes drug-resistant cancer (stem) cells. In drug-sensitive cancer populations, first-line chemotherapy reduces tumor volume via apoptosis. However, it stimulates drug-resistant cancer populations and finally results in tumor recurrence. Recurrent tumors are unresponsive to chemotherapeutic drugs and are primarily drug-resistant cancers. Therefore, increased apoptosis in drug-resistant cancer cells in heterogeneous populations is important in first-line chemotherapeutic treatments. The overexpression of ABCB1 (or P-gp) on cell membranes is an important characteristic of drug-resistant cancer cells; therefore, first-line combination treatments with P-gp inhibitors could delay tumor recurrence. Low doses of bipolar drugs showed P-gp inhibitory activity, and their use as a combined therapy sensitized drug-resistant cancer cells. FDA-approved bipolar drugs have been used in clinics for a long period of time, and their toxicities are well reported. They can be easily applied as first-line combination treatments for targeting resistant cancer populations. To apply bipolar drugs faster in first-line combination treatments, knowledge of their complete information is crucial. This review discusses the use of low-dose bipolar drugs in sensitizing ABCB1-overexpressing, drug-resistant cancers. We believe that this review will contribute to facilitating first-line combination treatments with low-dose bipolar drugs for targeting drug-resistant cancer populations. In addition, our findings may aid further investigations into targeting drug-resistant cancer populations with low-dose bipolar drugs.
Collapse
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Poorabbasi N, Zargar SJ, Aghasadeghi MR, Sheikhpour M. Anti-proliferative effects of cabergoline nano conjugated form on lung cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
11
|
Rosas-Cruz A, Salinas-Jazmín N, Valdés-Rives A, Velasco-Velázquez MA. DRD1 and DRD4 are differentially expressed in breast tumors and breast cancer stem cells: pharmacological implications. Transl Cancer Res 2022; 11:3941-3950. [PMID: 36523297 PMCID: PMC9745373 DOI: 10.21037/tcr-22-783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND Abnormal expression of dopamine receptors (DRs) has been described in multiple tumors, but their roles in breast cancer are inconclusive or contradictory since evidence of pro- and anti-tumoral effects have been reported. Herein, we analyzed the expression of DRs in breast cancer, especially in the subpopulation of cancer stem cells (CSCs), and evaluated the functional role of the receptors by pharmacological targeting. METHODS Expression of DRD1, DRD2, DRD3, DRD4 and DRD5 was investigated in human breast tumors and cancer cell lines using public databases. Correlation between gene expression and clinical outcome was studied by Kaplan-Mayer analyses. By flow cytometry, we assessed DRD1, DRD2, and DRD4 expression in cultures of MCF-7 (luminal) and MDA-MB-231 (triple-negative) cells. Using the previously reported SORE6 reporter system we examined the differential expression of DRD1, DRD2, and DRD4 in CSCs and tumor-bulk cells. The effect of pharmacological modulation of DRs on stemness and cell migration was studied by quantification of the reporter-positive fraction and wound healing assays, respectively. RESULTS DRD1, DRD2 and DRD4 transcripts were expressed in breast tumors. DRD4 was overexpressed compared to normal tissue and showed prognostic value. DRD1, DRD2 and DRD4 transcripts were also found in MCF-7 and MDA-MB-231 cells, but only DRD1 and DRD4 proteins were detected. DRD4 was underexpressed in CSCs compared to tumor-bulk cells, whereas DRD1 was found only in the CSCs fraction, suggesting that those receptors may have relevance in stemness control. Subtoxic concentrations of DRD1-targeting compounds did not induced significant changes in the CSCs pool. On the other hand, DRD4 inhibition by Haloperidol slightly increased the CSCs content but also reduced cell migration. CONCLUSIONS Pharmacological modulation of DRD1 in MCF-7 or MDA-MB-231 cells seems to be irrelevant for stemness maintenance. DRD4 reduced expression in breast CSCs or its inhibition by Haloperidol favors CSCs-pool expansion. DRD4 inhibition can also reduce cell migration, indicating that DRD4 plays different roles in stem and non-stem breast cancer cells.
Collapse
Affiliation(s)
- Arely Rosas-Cruz
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
- Posgrado en Ciencias Bioquímicas, UNAM, CDMX, México
| | - Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Anahí Valdés-Rives
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| |
Collapse
|
12
|
Sochnev VS, Morkovnik AS, Zubenko AA, Divaeva LN, Demidov OP, Gribanova TN, Fetisov LN, Chekrysheva VV, Kononenko KN, Bodryakova MA, Klimenko AI, Borodkin GS, Estrin IA. Novel recyclization of 3,4-dihydroisoquinolines as an efficient route to a new type of heteroarylated derivatives of β-arylethylamines. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Siddiqui S, Deshmukh AJ, Mudaliar P, Nalawade AJ, Iyer D, Aich J. Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review. J Egypt Natl Canc Inst 2022; 34:33. [PMID: 35934727 PMCID: PMC9358112 DOI: 10.1186/s43046-022-00137-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
Collapse
|
14
|
Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, Tucker K, Yin Y, Sun W, Kong W, Prabhu V, Allen JE, Zhou C, Bae-Jump VL. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front Oncol 2022; 12:789450. [PMID: 35372029 PMCID: PMC8970020 DOI: 10.3389/fonc.2022.789450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP). The present study was to explore the anti-tumor potential effect of ONC201 in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer under obese (high fat diet) and lean (low fat diet) conditions. ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial–mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial–mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. These results suggest that ONC201 may be a promising therapeutic agent to be explored in future clinical trials in high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ziwei Fang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stuart R. Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| |
Collapse
|
15
|
The Nervous System Contributes to the Tumorigenesis and Progression of Human Digestive Tract Cancer. J Immunol Res 2022; 2022:9595704. [PMID: 35295188 PMCID: PMC8920690 DOI: 10.1155/2022/9595704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the gastrointestinal tract are one of the highest incidences of morbidity and mortality in humans. Recently, a growing number of researchers have indicated that nerve fibers and nerve signals participate in tumorigenesis. The current overarching view based on the responses to therapy revealed that tumors are partly promoted by the tumor microenvironment (TME), endogenous oncogenic factors, and complex systemic processes. Homeostasis of the neuroendocrine-immune axis (NEI axis) maintains a healthy in vivo environment in humans, and dysfunction of the axis contributes to various cancers, including the digestive tract. Interestingly, nerves might promote tumor development via multiple mechanisms, including perineural invasion (PNI), central level regulation, NEI axis effect, and neurotransmitter induction. This review focuses on the association between digestive tumors and nerve regulation, including PNI, the NEI axis, stress, and neurotransmitters, as well as on the potential clinical application of neurotherapy, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
16
|
Persico M, Abbruzzese C, Matteoni S, Matarrese P, Campana AM, Villani V, Pace A, Paggi MG. Tackling the Behavior of Cancer Cells: Molecular Bases for Repurposing Antipsychotic Drugs in the Treatment of Glioblastoma. Cells 2022; 11:263. [PMID: 35053377 PMCID: PMC8773942 DOI: 10.3390/cells11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process. Drug repurposing is also under active investigation in GBM therapy, since a wide range of noncancer and cancer therapeutics have been proposed or investigated in clinical trials. Among these, a remarkable role is played by the antipsychotic drugs, thanks to some still partially unexplored, interesting features of these agents. Indeed, antipsychotic drugs have been described to interfere at variable incisiveness with most hallmarks of cancer. In this review, we analyze the effects of antipsychotics in oncology and how these drugs can interfere with the hallmarks of cancer in GBM. Overall, according to available evidence, mostly at the preclinical level, it is possible to speculate that repurposing of antipsychotics in GBM therapy might contribute to providing potentially effective and inexpensive therapies for patients with this disease.
Collapse
Affiliation(s)
- Michele Persico
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00162 Rome, Italy;
| | - Anna Maria Campana
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| |
Collapse
|
17
|
Deregulation of Trace Amine-Associated Receptors (TAAR) Expression and Signaling Mode in Melanoma. Biomolecules 2022; 12:biom12010114. [PMID: 35053262 PMCID: PMC8774021 DOI: 10.3390/biom12010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
Trace amine-associated receptors (TAARs) interact with amine compounds called “trace amines” which are present in tissues at low concentrations. Recently, TAARs expression in neoplastic tumors was reported. In this study, TAARs expression was analyzed in public RNAseq datasets in nevi and melanoma samples and compared to the expression of dopamine receptors (DRDs) that are known to be involved in melanoma pathogenesis. It was found that all DRDs and TAARs are expressed in nevi at comparable levels. Differential expression analysis demonstrated the drastic decrease of TAAR1, TAAR2, TAAR5, TAAR6, and TAAR8 expression in melanomas compared to benign nevi with only TAAR6, TAAR8, and TAAR9 remaining detectable in malignant tumors. No association of TAARs expression levels and melanoma clinicopathological characteristics was observed. TAARs co-expressed genes in melanoma and nevi were selected by correlation values for comparative pathway enrichment analysis between malignant and benign neoplasia. It was found that coexpression of TAARs with genes inquired in neurotransmitter signaling is lost in melanoma, and tumor-specific association of TAAR6 expression with the mTOR pathway and inflammatory signaling is observed. It is not excluded that TAARs may have certain functions in melanoma pathogenesis, the significance of which to tumor progression is yet to be understood.
Collapse
|
18
|
Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021; 11:24419. [PMID: 34952904 PMCID: PMC8709863 DOI: 10.1038/s41598-021-03031-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
In this research, a new nano drug-based multi-walled carbon nanotubes (MWCNTs) was prepared and evaluated qualitatively. Bromocriptine (BRC) was conjugated to functionalized carbon nanotubes. Then, the CHNS, FT-IR, SEM, and RAMAN tests for characterization of the conjugated drug were done. The nanofluid-containing nano-drug was evaluated on lung cancer cells (A549 & QU-DB) and MRC5 by MTT and flow cytometry tests. Then, the gene expression studies of dopamine receptor genes were done before and after nano-drug treatment. After that, a western blotting test was carried out for further investigation of dopamine receptors protein production. Finally, Bax and Bcl-2 secretion were measured by the ELISA method in cells affected by MWCNTs-BRC Nf compared to untreated cells. The results showed that the nano-drug had a significant lethal effect on cancer cells, while it had no toxicity on MRC5. Also, the nano-drug could significantly induce apoptosis in lung cancer cells at a lower dose compared to the drug alone. In this study, a targeted nano-drug delivery system was designed, and its performance was evaluated based on neurotransmitter pathways, and the results showed that it may be useful in the treatment of lung cancer. However, additional studies on animal models are underway.
Collapse
Affiliation(s)
| | | | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Pornour
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, College Park, USA
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
19
|
Zhao W, Zhao YL, Liu M, Liu L, Wang Y. Possible repair mechanisms of renin-angiotensin system inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones on methamphetamine-induced neurotoxicity. Mol Biol Rep 2021; 48:7509-7516. [PMID: 34623593 DOI: 10.1007/s11033-021-06741-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the imbalance of dopamine levels and the destruction of the blood-brain barrier. An increase in dopamine may induce adverse effects such as behavioral sensitization and excessive locomotion. Damage to the blood-brain barrier can cause toxic or harmful substances to leak to the central nervous system, leading to neurotoxicity. The renin-angiotensin system is essential for the regulation of dopamine levels in the brain. Matrix metalloproteinase-9 causes reward effects and behavioral sensitization by inducing dopamine release. Prolactin has been shown to be involved in the regulation of tight junction proteins and the integrity of the blood-brain barrier. At present, the treatment of methamphetamine detoxification is still based on psychotherapy, and there is no specific medicine. With the rapid increase in global seizures of methamphetamine, the treatment of its toxicity has attracted more and more attention. This review intends to summarize the therapeutic mechanisms of renin-angiotensin inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones (prolactin) on methamphetamine neurotoxicity. The repair effects of these three on methamphetamine may be related to the maintenance of brain dopamine balance and the integrity of the blood-brain barrier. This review is expected to provide the new therapeutic strategy of methamphetamine toxicity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China.,Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
20
|
Free RB, Cuoco CA, Xie B, Namkung Y, Prabhu VV, Willette BKA, Day MM, Sanchez-Soto M, Lane JR, Laporte SA, Shi L, Allen JE, Sibley DR. Pharmacological characterization of the imipridone anti-cancer drug ONC201 reveals a negative allosteric mechanism of action at the D 2 dopamine receptor. Mol Pharmacol 2021; 100:372-387. [PMID: 34353882 DOI: 10.1124/molpharm.121.000336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for anti-proliferative effects. Curve-shift experiments using D2R-mediated b-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. Significance Statement ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. In this study, we demonstrate that it antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anti-cancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- R Benjamin Free
- Molecular Neuropharmacology Section, NIH / NINDS, United States
| | | | | | | | | | | | | | | | - J Robert Lane
- Universities of Birmingham and Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
She X, Gao Y, Zhao Y, Yin Y, Dong Z. A high-throughput screen identifies inhibitors of lung cancer stem cells. Biomed Pharmacother 2021; 140:111748. [PMID: 34044271 DOI: 10.1016/j.biopha.2021.111748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the main cause of cancer morbidity and mortality. Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that can drive metastasis. The identification of CSC inhibitors and CSC-related genes is an alluring strategy for suppressing metastasis. Here, we established a simple and repeatable high-throughput CSC inhibitor screening platform that combined tumor sphere formation assays and cell viability assays. Human lung cancer cells were cocultured with 1280 pharmacologically active compounds (FDA-approved). Fifty-four candidate compounds obtained from our screening system completely or partially inhibited tumor sphere formation. A total of 5 of these 54 compounds (prochlorperazine dimaleate, thioridazine hydrochloride, ciproxifan hydrochloride, Ro 25-6981 hydrochloride, and AMN 082) completely inhibited the self-renewal of CSCs without cytotoxicity in vitro via their targets and suppressed lung cancer metastasis in vivo, suggesting that our screening platform is selective and reliable. DRD2, HRH3, and GRIN2B exhibited potent genes promoting CSCs in vitro experiments and clinical datasets. Further validation of the top hit (DRD2) and previously published studies demonstrate that our screening platform is a useful tool for CSC inhibitor and CSC-related gene screening.
Collapse
Affiliation(s)
- Xiaofei She
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China.
| | - Yaqun Gao
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China.
| | - Yan Zhao
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Yue Yin
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Zhewen Dong
- School of Life Sciences and Technology, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Duarte D, Cardoso A, Vale N. Synergistic Growth Inhibition of HT-29 Colon and MCF-7 Breast Cancer Cells with Simultaneous and Sequential Combinations of Antineoplastics and CNS Drugs. Int J Mol Sci 2021; 22:ijms22147408. [PMID: 34299028 PMCID: PMC8306770 DOI: 10.3390/ijms22147408] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
23
|
Abstract
Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Anne Billet
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Université de Paris, F-75005, Paris, France
| |
Collapse
|
24
|
Rosas-Cruz A, Salinas-Jazmín N, Velázquez MAV. Dopamine Receptors in Cancer: Are They Valid Therapeutic Targets? Technol Cancer Res Treat 2021; 20:15330338211027913. [PMID: 34212819 PMCID: PMC8255587 DOI: 10.1177/15330338211027913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
The dopamine receptors (DRs) family includes 5 members with differences in signal transduction and ligand affinity. Abnormal DRs expression has been correlated multiple tumors with their clinical outcome. Thus, it has been proposed that DRs-targeting drugs-developed for other diseases as schizophrenia or Parkinson's disease-could be helpful in managing neoplastic diseases. In this review, we discuss the role of DRs and the effects of DRs-targeting in tumor progression and cancer cell biology using multiple high-prevalence neoplasms as examples. The evidence shows that DRs are valid therapeutic targets for certain receptor/disease combinations, but the data are inconclusive or contradictory for others. In either case, further studies are required to define the precise role of DRs in tumor progression and propose better therapeutic strategies for their targeting.
Collapse
Affiliation(s)
- Arely Rosas-Cruz
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
- Posgrado en Ciencias Bioquímicas, UNAM, México
| | - Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
| | - Marco A. Velasco- Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
- Unidad Periférica de Investigación en Biomedicina Traslacional, Centro Médico Nacional 20 de noviembre ISSSTE / Facultad de Medicina, UNAM, México
| |
Collapse
|
25
|
Geng QS, Shen ZB, Zheng YY, Xue WH, Li LF, Zhao J. Precise medication for tumor patients in the context of mental stress. Cell Transplant 2021; 30:9636897211049813. [PMID: 34719974 PMCID: PMC8564128 DOI: 10.1177/09636897211049813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of disease-related death worldwide due to its late diagnosis and poor outcomes. Precision medicine plays an important role in the treatment of tumors. As found for many types of tumors, mental stress plays a vital role in the promotion and progression of tumors. In this paper, we briefly introduce the manifestation and effects of mental symptoms in tumor patients. We next specifically discuss the multiple roles of precision medicine in the tumor therapy. Finally, we also highlight the precision medicine strategy for psychiatric symptoms in tumor patients, which promises to enhance the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Qi-Shun Geng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Qi-Shun Geng and Zhi-Bo Shen are co-first author and equally
contributed to this work
| | - Zhi-Bo Shen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Qi-Shun Geng and Zhi-Bo Shen are co-first author and equally
contributed to this work
| | - Yuan-Yuan Zheng
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| | - Wen-Hua Xue
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou
University, Zhengzhou, China
| | - Li-Feng Li
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, Doo Kim N, Cho Han D, Kwon BM. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci 2019; 110:3788-3801. [PMID: 31571309 PMCID: PMC6890432 DOI: 10.1111/cas.14205] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
ARPC2 is a subunit of the Arp2/3 complex, which is essential for lamellipodia, invadopodia and filopodia, and ARPC2 has been identified as a migrastatic target molecule. To identify ARPC2 inhibitors, we generated an ARPC2 knockout DLD-1 human colon cancer cell line using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system and explored gene signature-based strategies, such as a connectivity map (CMap) using the gene expression profiling data of ARPC2 knockout and knockdown cells. From the CMap-based drug discovery strategy, we identified pimozide (a clinically used antipsychotic drug) as a migrastatic drug and ARPC2 inhibitor. Pimozide inhibited the migration and invasion of various cancer cells. Through drug affinity responsive target stability (DARTS) analysis and cellular thermal shift assay (CETSA), it was confirmed that pimozide directly binds to ARPC2. Pimozide increased the lag phase of Arp2/3 complex-dependent actin polymerization and inhibited the vinculin-mediated recruitment of ARPC2 to focal adhesions in cancer cells. To validate the likely binding of pimozide to ARPC2, mutant cells, including ARPC2F225A , ARPC2F247A and ARPC2Y250F cells, were prepared using ARPC2 knockout cells prepared by gene-editing technology. Pimozide strongly inhibited the migration of mutant cells because the mutated ARPC2 likely has a larger binding pocket than the wild-type ARPC2. Therefore, pimozide is a potential ARPC2 inhibitor, and ARPC2 is a new molecular target. Taken together, the results of the present study provide new insights into the molecular mechanism and target that are responsible for the antitumor and antimetastatic activity of pimozide.
Collapse
Affiliation(s)
- Jiyeon Choi
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Yu-Jin Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yae Jin Yoon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cheol-Hee Kim
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Seung-Jin Park
- Korea Research Institute of Bioscience and Biotechnology, Personalized Genomic Medicine Research Center, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Personalized Genomic Medicine Research Center, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Dong Cho Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| |
Collapse
|
27
|
Su H, Xue Z, Feng Y, Xie Y, Deng B, Yao Y, Tian X, An Q, Yang L, Yao Q, Xue J, Chen G, Hao C, Zhou T. N-arylpiperazine-containing compound (C2): An enhancer of sunitinib in the treatment of pancreatic cancer, involving D1DR activation. Toxicol Appl Pharmacol 2019; 384:114789. [PMID: 31669811 DOI: 10.1016/j.taap.2019.114789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Previous studies showed that dopamine (DA) significantly reduces the frequency of cancer stem-like cells (CSC) and enhances the efficacy of sunitinib (SUN) in the treatment of breast cancer and non-small cell lung cancer (NSCLC). To overcome the shortcomings of DA in clinical practice, the purpose of this study was to investigate the efficacy as well as the underlying mechanism of an orally available, N-arylpiperazine-containing compound C2, in the treatment of pancreatic cancer when used alone or in combination with SUN. Our results showed that C2 and SUN exerted synergistic effects on inhibiting the growth of SW1990 and PANC-1 pancreatic cancer cells. C2 significantly inhibited colony formation and migration of both cells. SW1990 xenograft and patient-derived xenograft (PDX) models were utilized for pharmacodynamic investigation in vivo. C2 alone showed little inhibition effect on tumor growth but increased the anti-tumor efficacy of SUN in both xenografts. Moreover, C2 down-regulated CSC markers (CD133 and ALDH) of both cancer cells and up-regulated the expression of dopamine receptor D1 (D1DR) in tumor. Besides, the SW1990 tumor growth was dose-dependently inhibited when the cells were pretreated with C2 before implantation. C2 increased intratumoral cAMP level, and the combination with D1DR specific antagonist SCH23390 reversed the above-mentioned effects of C2 both in vitro and in vivo, indicating the activation of D1DR may be involved in the underlying mechanism of C2 action. In summary, C2 could reduce the CSC frequency and enhance the anti-cancer effect of SUN in the treatment of pancreatic cancer, demonstrating its potential in cancer therapy.
Collapse
Affiliation(s)
- Hong Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zixi Xue
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaoyao Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiming An
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junsheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoshu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Tianyan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene 2019; 39:503-515. [PMID: 31527667 DOI: 10.1038/s41388-019-1006-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are conventionally viewed as nerve-secreted substances that mediate the stimulatory or inhibitory neuronal functions through binding to their respective receptors. In the past decades, many novel discoveries come to light elucidating the regulatory roles of neurotransmitters in the physiological and pathological functions of tissues and organs. Notably, emerging data suggest that cancer cells take advantage of the neurotransmitters-initiated signaling pathway to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can affect immune cells and endothelial cells in the tumor microenvironment to promote tumor progression. Therefore, a better understanding of the mechanisms underlying neurotransmitter function in tumorigenesis, angiogenesis, and inflammation is expected to enable the development of the next generation of antitumor therapies. Here, we summarize the recent important studies on the different neurotransmitters, their respective receptors, target cells, as well as pro/antitumor activity of specific neurotransmitter/receptor axis in cancers and provide perspectives and insights regarding the rationales and strategies of targeting neurotransmitter system to cancer treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| |
Collapse
|
29
|
Gao Y, Sun TY, Bai WF, Bai CG. Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells. Eur J Med Chem 2019; 183:111692. [PMID: 31541872 DOI: 10.1016/j.ejmech.2019.111692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
A novel series of phenothiazine derivatives containing diethanolamine, methoxyethylamine, flavonoids, and a nitric oxide (NO) donor was designed and synthesized for the treatment of breast cancer. Phenothiazine derivatives (l) did not noticeably inhibit the growth of SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells, whereas phenothiazine derivatives (ll) containing the NO donor were more potent or had comparable inhibitory activity to trifluoperazine (TFP) and thioridazine against SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells. Compounds 20a-c and 21a-c showed the strongest activity in SUM159, MDA-MB-231, MCF-7, and SKBR-3 cells, and more potent inhibitory activity than TFP against KG1a cells (IC50 = 1.63, 2.93, 1.14, 1.78, 2.20, and 1.20 vs. 4.58 μM). Compounds 20a and 21a had lower toxicity than compounds 20b-c and 21b-c, and inhibited colony formation in MCF-7 cells, decreased the formation of mammospheres in SUM159 cells, and inhibited the migration of MDA-MB-231 cells. Compounds 20a and 21a could inhibited pNF-κB-p65 as shown by dual-luciferase reporter assays and western blotting in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yuan Gao
- High-throughput Molecular Drug Discovery Center, Tianjin International Joint Academy of BioMedicine, Tianjin, 300457, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China
| | - Tong-Yan Sun
- High-throughput Molecular Drug Discovery Center, Tianjin International Joint Academy of BioMedicine, Tianjin, 300457, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China
| | - Wen-Fei Bai
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, PR China
| | - Cui-Gai Bai
- High-throughput Molecular Drug Discovery Center, Tianjin International Joint Academy of BioMedicine, Tianjin, 300457, PR China.
| |
Collapse
|
30
|
Hsieh YH, Chan HL, Lin CF, Liang SHY, Lu ML, McIntyre RS, Lee Y, Lin TC, Chiu WC, Chen VCH. Antipsychotic use is inversely associated with gastric cancer risk: A nationwide population-based nested case-control study. Cancer Med 2019; 8:4484-4496. [PMID: 31183993 PMCID: PMC6675741 DOI: 10.1002/cam4.2329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
Objective The association between antipsychotic use and gastric cancer risk remains unclear. Therefore, this study aimed to determine the association between antipsychotic exposure and the incidence of gastric cancer. Methods Using a nested case‐control design, a total of 34 470 gastric cancer patients and 163 430 nongastric cancer controls were identified from Taiwan's National Health Insurance Research Database between 1 January 1997 and 31 December 2013. We analyzed the data using a conditional logistic regression model to adjust for possible confounding variables. Results Antipsychotic use was independently inversely associated with gastric cancer risk after controlling for potential confounding factors including income, urbanization, medications, physical and medical illness, aspirin use, nonsteroidal anti‐inflammatory drug use and triple therapy. In addition, dose‐dependent trends against gastric cancer risk were also shown with individual antipsychotic compounds including thioridazine, haloperidol, sulpiride, clozapine, olanzapine, quetiapine, amisulpride, and risperidone. A sensitivity analysis showed that second‐generation antipsychotics had significant dose‐dependent effects in reducing the risk of gastric cancer risk in patients with and without peptic ulcer disease. Conclusions Antipsychotic use was inversely associated with gastric cancer risk, and dose‐dependent effects against gastric cancer were also seen with several individual antipsychotic compounds.
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- Department of Child Psychiatry, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Lin Chan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Child Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiao-Fan Lin
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Child Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sophie Hsin-Yi Liang
- Department of Child Psychiatry, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital & School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery Foundation, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | | | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Vincent Chin-Hung Chen
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
31
|
Lee SI, Roney MSI, Park JH, Baek JY, Park J, Kim SK, Park SK. Dopamine receptor antagonists induce differentiation of PC-3 human prostate cancer cell-derived cancer stem cell-like cells. Prostate 2019; 79:720-731. [PMID: 30816566 DOI: 10.1002/pros.23779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The objective of this study was to determine whether PC-3 human prostate cancer cell-derived cancer stem cells (CSC)-like cells grown in a regular cell culture plate not coated with a matrix molecule might be useful for finding differentiation-inducing agents that could alter properties of prostate CSC. METHODS Monolayer cells prepared from sphere culture of PC-3 cells were characterized for the presence of pluripotency and tumorigenicity. They were then applied to screen a compound library to find compounds that could induce morphology changes of cells. Mechanisms of action of compounds selected from the chemical library that induced the loss of pluripotency of cells were also investigated. RESULTS C5A cells prepared from PC-3 cell-derived sphere culture expressed pluripotency markers such as Oct4, Sox2, and Klf4. C5A cells were highly proliferative. They were invasive in vitro and tumorigenic in vivo. Some dopamine receptor antagonists such as thioridazine caused reduction of pluripotency markers and tumorigenicity. Thioridazine, unlike promazine, inhibited phosphorylation of AMPK in a dose dependent manner. BML-275, an AMPK inhibitor, also induced differentiation of C5A cells as seen with thioridazine whereas A769663, an AMPK activator, blocked its differentiation-inducing ability. Transfection of C5A cells with siRNAs of dopamine receptor subtypes revealed that knockdown of DRD2 or DRD4 induced morphology changes of C5A cells. CONCLUSIONS Some dopamine receptor antagonists such as thioridazine can induce differentiation of CSC-like cells by inhibiting phosphorylation of AMPK. Binding to DRD2 or DRD4 might have mediated the action of thioridazine involved in the differentiation of CSC-like cells.
Collapse
Affiliation(s)
- Su In Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | | | - Jong Hyeok Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ji-Young Baek
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jooyeon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, Republic of Korea
| |
Collapse
|
32
|
Abdelaleem M, Ezzat H, Osama M, Megahed A, Alaa W, Gaber A, Shafei A, Refaat A. Prospects for repurposing CNS drugs for cancer treatment. Oncol Rev 2019; 13:411. [PMID: 31044029 PMCID: PMC6478007 DOI: 10.4081/oncol.2019.411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023] Open
Abstract
Drug repurposing is the idea of using an already approved drug for another disease or disorder away from its initial use. This new approach ensures the reduction in high cost required for developing a new drug in addition to the time consumed, especially in the tumor disorders that show an unceasing rising rate with an unmet success rate of new anticancer drugs. In our review, we will review the anti-cancer effect of some CNS drugs, including both therapeutic and preventive, by searching the literature for preclinical or clinical evidence for anticancer potential of central nervous system drugs over the last 8 years period (2010-2018) and including only evidence from Q1 journals as indicated by Scimago website (www.scimagojr.com). We concluded that Some Central Nervous system drugs show a great potential as anti-cancer in vitro, in vivo and clinical trials through different mechanisms and pathways in different types of cancer that reveal a promising evidence for the repurposing of CNS drugs for new indications.
Collapse
Affiliation(s)
| | - Hossam Ezzat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Adel Megahed
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Waleed Alaa
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ahmed Gaber
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ayman Shafei
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Alaa Refaat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt.,Research Center, Misr International University (MIU), Cairo, Egypt.,Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
33
|
Wang X, Wang ZB, Luo C, Mao XY, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 2019; 10:1622-1632. [PMID: 31205518 PMCID: PMC6548012 DOI: 10.7150/jca.27780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4). Dopamine receptors are involved in all of the physiological functions of dopamine, including the autonomic movement, emotion, hormonal regulation, dopamine-induced immune effects, and tumor behavior, and so on. Increasing evidence shows that dopamine receptors are associated with the regulation of tumor behavior, such as tumor cell death, proliferation, invasion, and migration. Recently, some studies showed that dopamine receptors could regulate several ways of death of the tumor cell, including apoptosis, autophagy-induced death, and ferroptosis, which cannot only directly affect tumor behavior, but also limit tumor progress via activating tumor immunity. In this review, we focus mainly on the function of the dopamine receptor on Bio-behavior of tumor as a potential therapeutic target.
Collapse
Affiliation(s)
- Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,School of Life Sciences, Central South University, Changsha, Hunan 410078
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
34
|
Tung MC, Wen YC, Wang SS, Lin YW, Liu YC, Yang SF, Chien MH. Dopamine receptor D2 genetic variations is associated with the risk and clinicopathological variables of urothelial cell carcinoma in a Taiwanese population. Int J Med Sci 2018; 15:1187-1193. [PMID: 30123056 PMCID: PMC6097255 DOI: 10.7150/ijms.26895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022] Open
Abstract
Dopamine receptor D2 (DRD2) is overexpressed in several kinds of cancers and was correlated with the prognosis of these cancers. Polymorphisms within the DRD2 gene were shown to be associated with lung and colon cancers. The purpose of this study was to explore effects of DRD2 gene polymorphisms on the susceptibility to and clinicopathological characteristics of urothelial cell carcinoma (UCC). In total, 369 patients diagnosed with UCC and 738 healthy controls were enrolled to analyze DRD2 genotypes at four loci (rs1799732, -141C>del; rs1079597, TaqIB; rs6277, 957C>T; and rs1800497, TaqIA) using a TaqMan-based real-time polymerase chain reaction (PCR). We found a significantly lower risk for UCC in individuals with the DRD2 rs6277 CT genotype compared to those with the wild-type CC genotype (adjusted odds ratio (AOR)=0.405, 95% confidence interval (CI): 0.196~0.837, p=0.015). In 124 younger patients (aged < 65 years) of the recruited UCC cohort, patients who carried at least one T allele of DRD2 rs1800497 were at higher risk (AOR=2.270, 95% CI: 1.060~4.860, p=0.033) of developing an invasive stage (pT2~pT4). In 128 female patients of the recruited UCC cohort, patients who carried at least one deletion allele of DRD2 rs1799732 showed a higher incidence of having an invasive stage (AOR=2.585, 95% CI: 1.066~6.264, p=0.032) and a large tumor (AOR=2.778, 95% CI: 1.146~6.735, p=0.021). Further analyses of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed correlations of the expression of DRD2 with an invasive tumor, tumor metastasis, and the lower survival rate in patients with UCC. Our findings suggest that DRD2 levels might affect the progression of UCC, and the polymorphisms rs6277, rs1800497, and rs1799732 of DRD2 are probably associated with the susceptibility and clinicopathologic development of UCC in a Taiwanese population.
Collapse
Affiliation(s)
- Min-Che Tung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Cheng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|