1
|
Kim MS, Selvaraj B, Yeo HT, Park JS, Lee JW, Park JS. Discovery of 15-deoxynaphthomycins activating the antioxidant NRF2-ARE pathway from Streptomyces sp. N50 via genome mining, global regulator introduction, and molecular networking. Microb Cell Fact 2025; 24:14. [PMID: 39794808 PMCID: PMC11724615 DOI: 10.1186/s12934-024-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice. Here, we introduce an endophytic Streptomyces sp. N50, which was isolated from the medicinal plant Selaginella tamariscina. Upon sequencing its entire genome, 33 biosynthetic gene clusters (BGCs) were identified in a chromosome and a megaplasmid. Subsequent genome mining revealed that the new 15-deoxynaphthomycin could be produced due to the presence of an enoyl reductase domain, which is absent in the known BGC of naphthomycin, a type of ansamycin antibiotics. In addition, the engineered strain with the introduction of the global regulatory gene afsR2 into N50 successfully produced 15-deoxynaphthomycins. Furthermore, molecular network analysis via MS/MS selectively confirmed the presence of additional sulfur-containing 15-deoxynaphthomycin congeners. Eventually, six new 15-deoxynaphthomycins were isolated and elucidated from the engineered strain N50. This family of compounds is known to exhibit various biological activities. Also, the presence of quinone moieties in these compounds, which are known to activate NRF2, they were tested for their ability to activate NRF2. Among the new compounds, three (1, 5, and 6) activated the antioxidant NRF2-ARE signaling pathway. Treatment with these compounds significantly elevated NRF2 levels in HepG2 cells and further induced the expression of NRF2 target genes associated with the antioxidant response. This study suggests that the combination of genome mining, gene engineering and molecular networking is helpful for generating new small molecules as pharmaceutical candidates from microorganisms.
Collapse
Affiliation(s)
- Min-Seon Kim
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Baskar Selvaraj
- Center for Natural Product Efficacy Optimization, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Hee-Tae Yeo
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Jun-Su Park
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Jae Wook Lee
- Center for Natural Product Efficacy Optimization, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea.
| | - Jin-Soo Park
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Huang S, Wang D, Wu J, Liu F, Liao X, Shi X, Xiao J, Zhang S, Lu H. Hepatotoxicity of N-nitrosodin-propylamine in larval zebrafish by upregulating the Wnt pathway. Toxicol Appl Pharmacol 2024; 492:117132. [PMID: 39481764 DOI: 10.1016/j.taap.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
N-nitrosodin-propylamine is an organic compound mainly used in organic synthesis. As a typical pollutant, the accidental release of N-nitrosodin-propylamine may cause environmental pollution, especially water environment pollution. In the present study, we used the zebrafish model for the first time to evaluate the developmental toxicity of this drug in the liver. Zebrafish larvae fertilized at 72hpf showed a range of toxic responses after 72hpf exposure to the drug. These include increased mortality, delayed absorption of yolk sac nutrients, shorter body length, abnormal liver morphology, gene disruption, and altered expression of various indicators with increasing dose. Studies on the mechanism of toxicity showed that N-nitrosodin-propylamine exposure increased the level of oxidative stress, increased the level of apoptosis in hepatocytes, and up-regulated the transcriptional expression level of Wnt signaling pathway genes. Astaxanthin and IWR-1 can effectively save the liver toxicity in zebrafish caused by N-nitrosodin-propylamine. Our study showed that the drug exposure induced hepatotoxicity in zebrafish larvae through the up-regulation of Wnt signaling pathway, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China
| | - Shouqiang Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Dagang Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Jie Wu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xiaowen Shi
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China.
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
3
|
Wei Y, Chen X, Li Y, Guo Y, Zhang S, Jin J, Li J, Wu D. Toxicological mechanism of cannabidiol (CBD) exposure on zebrafish embryonic development. Food Chem Toxicol 2024; 193:114929. [PMID: 39134136 DOI: 10.1016/j.fct.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024]
Abstract
Cannabidiol (CBD) is the main component of plant Cannabis (Cannabis sativa), which exhibits strong antioxidant and anti-inflammatory activities. With the legalization of CBD in the United States, it is an inevitable tendency for its global legalization in the future. Therefore, it has become an urgent task to conduct the toxicological evaluation of CBD before clinical application. In this study, the developmental toxicities of CBD on zebrafish embryos were systematically evaluated, and the mechanisms were revealed. The results showed that the phenotype of liver degeneration was observed in 96 hpf zebrafish embryos after 0.1-5 μmol/L CBD exposure, further RT-qPCR experiments indicated that the above result may attributed by the alterations of FABP10A, GCLC, and GSR. Besides, 1 and 5 μmol/L CBD contributed to the developmental toxicities of heart and eye in zebrafish embryos, characterizing by the decrease in heart rate, the phenotype of pericardial edema, and the reduce of eye area. Compared to other organs, the liver of zebrafish displayed the most sensitive characteristic to CBD exposure, as 0.1 μmol/L CBD already led to the phenotype of liver degeneration. In summary, this paper provided theoretical supports for CBD toxicology research, and laid the foundation for its future clinical application.
Collapse
Affiliation(s)
- Ying Wei
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Xiqi Chen
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Yue Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Sida Zhang
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jiazheng Jin
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| |
Collapse
|
4
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Slastnikova TA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Pharmaceutics 2024; 16:1345. [PMID: 39458673 PMCID: PMC11511107 DOI: 10.3390/pharmaceutics16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The study of oxidative stress in cells and ways to prevent it attract increasing attention. Antioxidant defense of cells can be activated by releasing the transcription factor Nrf2 from a complex with Keap1, its inhibitor protein. The aim of the work was to study the effect of the modular nanotransporter (MNT) carrying an R1 anti-Keap1 monobody (MNTR1) on cell homeostasis. Methods: The murine hepatocyte AML12 cells were used for the study. The interaction of fluorescently labeled MNTR1 with Keap1 fused to hrGFP was studied using the Fluorescence-Lifetime Imaging Microscopy-Förster Resonance Energy Transfer (FLIM-FRET) technique on living AML12 cells transfected with the Keap1-hrGFP gene. The release of Nrf2 from the complex with Keap1 and its levels in the cytoplasm and nuclei of the AML12 cells were examined using a cellular thermal shift assay (CETSA) and confocal laser scanning microscopy, respectively. The effect of MNT on the formation of reactive oxygen species was studied by flow cytometry using 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Results: MNTR1 is able to interact with Keap1 in the cytoplasm, leading to the release of Nrf2 from the complex with Keap1 and a rapid rise in Nrf2 levels both in the cytoplasm and nuclei, ultimately causing protection of cells from the action of hydrogen peroxide. The possibility of cleavage of the monobody in endosomes leads to an increase in the observed effects. Conclusions: These findings open up a new approach to specifically modulating the interaction of intracellular proteins, as demonstrated by the example of the Keap1-Nrf2 system.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
5
|
Yu Y, Liang J, Yuan Z, Wang A, Liu X, Chen Y, Zhang M, Gao Y, Zhang H, Liu Y. Bioactive compound schaftoside from Clinacanthus nutans attenuates acute liver injury by inhibiting ferroptosis through activation the Nrf2/GPX4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118135. [PMID: 38556139 DOI: 10.1016/j.jep.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinacanthus nutans (Burm. f.) Lindau, a traditional herb renowned for its anti-tumor, antioxidant, and anti-inflammatory properties, has garnered considerable attention. Although its hepatoprotective effects have been described, there is still limited knowledge of its treatment of acute liver injury (ALI), and its mechanisms remain unclear. AIM OF THE STUDY To assess the efficacy of Clinacanthus nutans in ALI and to identify the most effective fractions and their underlying mechanism of action. METHODS Bioinformatics was employed to explore the underlying anti-hepatic injury mechanisms and active compounds of Clinacanthus nutans. The binding ability of schaftoside, a potential active ingredient in Clinacanthus nutans, to the core target nuclear factor E2-related factor 2 (Nrf2) was further determined by molecular docking. The role of schaftoside in improving histological abnormalities in the liver was observed by H&E and Masson's staining in an ALI model induced by CCl4. Serum and liver biochemical parameters were measured using AST, ALT and hydroxyproline kits. An Fe2+ kit, transmission electron microscopy, western blotting, RT-qPCR, and DCFH-DA were used to measure whether schaftoside reduces ferroptosis-induced ALI. Subsequently, specific siRNA knockdown of Nrf2 in AML12 cells was performed to further elucidate the mechanism by which schaftoside attenuates ferroptosis-induced ALI. RESULTS Bioinformatics analysis and molecular docking showed that schaftoside is the principal compound from Clinacanthus nutans. Schaftoside was shown to diminish oxidative stress levels, attenuate liver fibrosis, and forestall ferroptosis. Deeper investigations revealed that schaftoside amplified Nrf2 expression and triggered the Nrf2/GPX4 pathway, thereby reversing mitochondrial aberrations triggered by lipid peroxidation, GPX4 depletion, and ferroptosis. CONCLUSION The lead compound schaftoside counters ferroptosis through the Nrf2/GPX4 axis, providing insights into a novel molecular mechanism for treating ALI, thereby presenting an innovative therapeutic strategy for ferroptosis-induced ALI.
Collapse
Affiliation(s)
- Yi Yu
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Jingwei Liang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China
| | - Zhexin Yuan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Aiping Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xinxing Liu
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Yu Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Min Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Yanan Gao
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China
| | - Haiying Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, 571199, China.
| | - Yan Liu
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, 571199, China.
| |
Collapse
|
6
|
Cai J, Zhu Z, Li Y, Li Q, Tian T, Meng Q, Wang T, Ma Y, Wu J. Artemisia capillaris Thunb. Polysaccharide alleviates cholestatic liver injury through gut microbiota modulation and Nrf2 signaling pathway activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118009. [PMID: 38447617 DOI: 10.1016/j.jep.2024.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Meng
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
8
|
Yang YJ, Kim MJ, Yang JH, Heo JW, Kim HH, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Liquid Chromatography/Tandem Mass Spectrometry Analysis of Sophora flavescens Aiton and Protective Effects against Alcohol-Induced Liver Injury and Oxidative Stress in Mice. Antioxidants (Basel) 2024; 13:541. [PMID: 38790646 PMCID: PMC11117756 DOI: 10.3390/antiox13050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Kwang Youn Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
9
|
Zhou H, Liu Y, Su Y, Ji P, Kong L, Sun R, Zhang D, Xu H, Li W, Li W. Ginsenoside Rg1 attenuates lipopolysaccharide-induced chronic liver damage by activating Nrf2 signaling and inhibiting inflammasomes in hepatic cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117794. [PMID: 38244950 DOI: 10.1016/j.jep.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer) is a precious traditional Chinese medicine with multiple pharmacological effects. Ginsenoside Rg1 is a main active ingredient extracted from ginseng, which is known for its age-delaying and antioxidant effects. Increasing evidence indicates that Rg1 exhibits anti-inflammatory properties in numerous diseases and may ameliorate oxidative damage and inflammation in many chronic liver diseases. AIM OF THE STUDY Chronic inflammatory injury in liver cells is an important pathological basis of many liver diseases. However, its mechanism remains unclear and therapeutic strategies to prevent its development need to be further explored. Thus, our study is to delve the protective effect and mechanism of Rg1 against chronic hepatic inflammatory injuries induced by lipopolysaccharide (LPS). MATERIALS AND METHODS The chronic liver damage model in mice was build up by injecting intraperitoneally with LPS (200 μg/kg) for 21 days. Serum liver function indicators and levels of IL-1β, IL-6 and TNF-α were examined by using corresponding Kits. Hematoxylin and Eosin (H&E), Periodic acid-Schiff (PAS), and Masson stains were utilized to visualize hepatic histopathological damage, glycogen deposition, and liver fibrosis. The nuclear import of p-Nrf2 and the generation of Col4 in the liver were detected by IF, while IHC was employed to detect the expressions of NLRP3 and AIM2 in the hepatic. The Western blot and q-PCR were used to survey the expressions of proteins and mRNAs of fibrosis and apoptosis, and the expressions of Keap1, p-Nrf2 and NLRP3, NLRP1, AIM2 inflammasome-related proteins in mouse liver. The cell viability of human hepatocellular carcinoma cells (HepG2) was detected by Cell Counting Kit-8 to select the action concentration of LPS, and intracellular ROS generation was detected using a kit. The expressions of Nuclear Nrf2, HO-1, NQO1 and NLRP3, NLRP1, and AIM2 inflammasome-related proteins in HepG2 cells were detected by Western blot. Finally, the feasibility of the molecular interlinking between Rg1 and Nrf2 was demonstrated by molecular docking. RESULTS Rg1 treatment for 21 days decreased the levels of ALT, AST, and inflammatory factors of serum IL-1β, IL-6 and TNF-α in mice induced by LPS. Pathological results indicated that Rg1 treatment obviously alleviated hepatocellular injury and apoptosis, inflammatory cell infiltration and liver fibrosis in LPS stimulated mice. Rg1 promoted Keap1 degradation and enhanced the expressions of p-Nrf2, HO-1 and decreased the levels of NLRP1, NLRP3, AIM2, cleaved caspase-1, IL-1β and IL-6 in livers caused by LPS. Furthermore, Rg1 effectively suppressed the rise of ROS in HepG2 cells induced by LPS, whereas inhibition of Nrf2 reversed the role of Rg1 in reducing the production of ROS and NLRP3, NLRP1, and AIM2 expressions in LPS-stimulated HepG2 cells. Finally, the molecular docking illustrated that Rg1 exhibits a strong affinity towards Nrf2. CONCLUSION The findings indicate that Rg1 significantly ameliorates chronic liver damage and fibrosis induced by LPS. The mechanism may be mediated through promoting the dissociation of Nrf2 from Keap1 and then activating Nrf2 signaling and further inhibiting NLRP3, NLRP1, and AIM2 inflammasomes in liver cells.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pengmin Ji
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ran Sun
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Duoduo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Weizu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Kou Y, Chen Y, Feng T, Chen L, Wang H, Sun N, Zhao S, Yang T, Jiao W, Feng G, Fan H, Zhao Y. Glufosinate-ammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:148-155. [PMID: 37676913 DOI: 10.1002/tox.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.
Collapse
Affiliation(s)
- Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tongtong Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Luomeng Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Ahmed RF, Elbaset MA, Farouk H, Shabana ME, Ahmed-Farid OA, Nasr M. Nanoliposomal amino acids counteracting protein malnutrition induced hematopoietic and hepatic complications. J Drug Deliv Sci Technol 2023; 89:105051. [DOI: 10.1016/j.jddst.2023.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Tong G, Chen Y, Chen X, Fan J, Zhu K, Hu Z, Li S, Zhu J, Feng J, Wu Z, Hu Z, Zhou B, Jin L, Chen H, Shen J, Cong W, Li X. FGF18 alleviates hepatic ischemia-reperfusion injury via the USP16-mediated KEAP1/Nrf2 signaling pathway in male mice. Nat Commun 2023; 14:6107. [PMID: 37777507 PMCID: PMC10542385 DOI: 10.1038/s41467-023-41800-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a common complication occurs during hepatic resection and transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Here, we aim to explore the role of fibroblast growth factor 18 (FGF18) in hepatic IRI. In this work, we find that Hepatic stellate cells (HSCs) secrete FGF18 and alleviates hepatocytes injury. HSCs-specific FGF18 deletion largely aggravates hepatic IRI. Mechanistically, FGF18 treatment reduces the levels of ubiquitin carboxyl-terminal hydrolase 16 (USP16), leading to increased ubiquitination levels of Kelch Like ECH Associated Protein 1 (KEAP1) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, USP16 interacts and deubiquitinates KEAP1. More importantly, Nrf2 directly binds to the promoter of USP16 and forms a negative feedback loop with USP16. Collectively, our results show FGF18 alleviates hepatic IRI by USP16/KEAP1/Nrf2 signaling pathway in male mice, suggesting that FGF18 represents a promising therapeutic approach for hepatic IRI.
Collapse
Affiliation(s)
- Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Chen
- Department of pharmacy, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - ZiJing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjun Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenyu Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hui Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
- Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - XiaoKun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
- Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Zheng HC, Xue H, Yun WJ. An overview of mouse models of hepatocellular carcinoma. Infect Agent Cancer 2023; 18:49. [PMID: 37670307 PMCID: PMC10481604 DOI: 10.1186/s13027-023-00524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a severe burden on global health due to its high morbidity and mortality rates. However, effective treatments for HCC are limited. The lack of suitable preclinical models may contribute to a major failure of drug development for HCC. Here, we overview several well-established mouse models of HCC, including genetically engineered mice, chemically-induced models, implantation models, and humanized mice. Immunotherapy studies of HCC have been a hot topic. Therefore, we will introduce the application of mouse models of HCC in immunotherapy. This is followed by a discussion of some other models of HCC-related liver diseases, including non-alcoholic fatty liver disease (NAFLD), hepatitis B and C virus infection, and liver fibrosis and cirrhosis. Together these provide researchers with a current overview of the mouse models of HCC and assist in the application of appropriate models for their research.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
14
|
Yamagishi N, Yamamoto Y, Nishi T, Ito T, Kanai Y. Lansoprazole protects hepatic cells against cisplatin-induced oxidative stress through the p38 MAPK/ARE/Nrf2 pathway. PLoS One 2023; 18:e0287788. [PMID: 37384717 PMCID: PMC10309994 DOI: 10.1371/journal.pone.0287788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Lansoprazole, a proton pump inhibitor, can exert antioxidant effects through the induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, independently of the inhibition of acid secretion in the gastrointestinal tract. Lansoprazole has been reported to provide hepatoprotection in a drug-induced hepatitis animal model through the Nrf2/heme oxygenase-1 (HO1) pathway. We sought to investigate the molecular mechanism of cytoprotection by lansoprazole. An in vitro experimental model was conducted using cultured rat hepatic cells treated with lansoprazole to analyze the expression levels of Nrf2 and its downstream genes, the activity of Nrf2 using luciferase reporter assays, cisplatin-induced cytotoxicity, and signaling pathways involved in Nrf2 activation. Lansoprazole treatment of rat liver epithelial RL34 cells induced transactivation of Nrf2 and the expression of the Nrf2-dependent antioxidant genes encoding HO1, NAD(P)H quinone oxidoreductase-1, and glutathione S-transferase A2. Furthermore, cycloheximide chase experiments revealed that lansoprazole prolongs the half-life of the Nrf2 protein. Notably, cell viability was significantly increased by lansoprazole treatment in a cisplatin-induced cytotoxicity model. Moreover, the siRNA knockdown of Nrf2 fully abolished the cytoprotective effect of lansoprazole, whereas the inhibition of HO1 by tin-mesoporphyrin only partially abolished this. Finally, lansoprazole promoted the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not that of the extracellular signal-regulated kinase or the c-Jun N-terminal kinase. Using SB203580, a specific inhibitor for p38 MAPK, the lansoprazole-induced Nrf2/antioxidant response elements pathway activation and cytoprotective effects were shown to be exclusively p38 MAPK dependent. Lansoprazole was shown by these results to exert a cytoprotective effect on liver epithelial cells against the cisplatin-induced cytotoxicity through the p38 MAPK signaling pathway. This could have potential applications for the prevention and treatment of oxidative injury in the liver.
Collapse
Affiliation(s)
- Naoko Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshio Nishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
15
|
Hallis SP, Kim JM, Kwak MK. Emerging Role of NRF2 Signaling in Cancer Stem Cell Phenotype. Mol Cells 2023; 46:153-164. [PMID: 36994474 PMCID: PMC10070166 DOI: 10.14348/molcells.2023.2196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.
Collapse
Affiliation(s)
- Steffanus P. Hallis
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
16
|
Salama AAA, Yassen NN, Mansour HM. Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: Implication of SIRT1 pathways. Life Sci 2023; 324:121471. [PMID: 36746356 DOI: 10.1016/j.lfs.2023.121471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
AIM Aging is the leading risk factor for diminishing lung function, as well as injury and lung disorder. The target of our research was to examine the potential protective effect of naringin and the possible role of SIRT1 in mice with D-galactose-induced lung aging, by evaluating its effects on antioxidant systems, mitochondrial biogenesis, autophagy, and apoptosis, by referring to the potential involvement of Nrf2/NQO1, LKB1/AMPK/PGC-1α, FOXO1, and P53/caspase-3 signaling. MATERIAL AND METHODS The mice were randomly sorted into 5 groups (10 each): 1st: normal group received subcutaneous normal saline and intragastric distilled water, 2nd: naringin 300 mg/kg orally, 3rd: D-galactose (200 mg/kg/day) was administered subcutaneously into mice for eight weeks, to accelerate aging, 4th & 5th: oral naringin (150, 300 mg/kg) was given daily concurrently with D-galactose injection for 8 weeks. KEY FINDING In silico investigation revealed that naringin substantially stimulates the SIRT1 and AMPK molecules. At the molecular level, our findings indicated that treatment with naringin stimulated the mitochondrial biogenesis pathway through regulation of the LKB1/AMPK/PGC-1α signals and upregulated FOXO1-mediated autophagy. Furthermore, naringin exhibited antioxidant properties by activating the Nrf2/NQO1 pathway and inhibiting MDA and AGEs levels. In addition, Naringin ameliorated alveolar spaces destruction and bronchial wall thickening, as well as alleviated P53/caspase-3 apoptosis signaling. SIGNIFICANCE Naringin exerts protective effects against D-galactose-induced lung aging and enhances longevity by activating SIRT1. SIRT1 regulates various aging-related molecular pathways via restoring pro-oxidant/antioxidant homeostasis, activation of mitochondrial biogenesis, modulating of autophagy and inhibition of apoptosis.
Collapse
Affiliation(s)
- Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Heba M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| |
Collapse
|
17
|
Jawad M, Al-Akkam K, Mohammed M, Hassan SM. ROLE OF DIMETHYL FUMARATE (NRF2 ACTIVATOR) IN REDUCING OF CIPROFLOXACIN-INDUCED HEPATOTOXICITY IN RATS VIA THE NRF2/HO-1 PATHWAY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1001-1006. [PMID: 37326082 DOI: 10.36740/wlek202305117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: The present study aims to study the effect of DMF on ciprofloxacin-induced liver damage as assessed by liver function and liver pathology and to study this effect if it is thought to activate the Nrf2 antioxidant defense mechanism. PATIENTS AND METHODS Materials and methods: G1 (control), G2 (ciprofloxacin group), G3 and G4 (two DMF groups rats treated with DMF 50mg and 100mg), and G5 and G6 (two DMF groups rats treated with DMF 50mg and 100mg) (two ciprofloxacin Plus DMF at 50 mg and 100 mg). The tests included study of liver function, Nrf2 analysis, and anti-oxidant enzyme analysis. RESULTS Results: The serum blood Nrf2, HO-1, and tissue anti-oxidant enzymes all increased after ciprofloxacin treatment. The serum levels of Nrf2 and HO-1 were higher in the ciprofloxacin plus DMF groups, but anti-oxidant enzymes were lower. DMF increased Nrf2 expression in rats when ciprofloxacin caused hepatotoxicity. CONCLUSION Conclusions: DMF lowers experimental hepatotoxicity in vivo. This effect is thought to activate the Nrf2 antioxidant defense mechanism.
Collapse
|
18
|
Zinovkin RA, Kondratenko ND, Zinovkina LA. Does Nrf2 Play a Role of a Master Regulator of Mammalian Aging? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1465-1476. [PMID: 36717440 DOI: 10.1134/s0006297922120045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For a long time Nrf2 transcription factor has been attracting attention of researchers investigating phenomenon of aging. Numerous studies have investigated effects of Nrf2 on aging and cell senescence. Nrf2 is often considered as a key player in aging processes, however this needs to be proven. It should be noted that most studies were carried out on invertebrate model organisms, such as nematodes and fruit flies, but not on mammals. This paper briefly presents main mechanisms of mammalian aging and role of inflammation and oxidative stress in this process. The mechanisms of Nrf2 activity regulation, its involvement in aging and development of the senescence-associated secretory phenotype (SASP) are also discussed. Main part of this review is devoted to critical analysis of available experimental data on the role of Nrf2 in mammalian aging.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Natalia D Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
19
|
Chen X, Zhuang J, Chen Q, Xu L, Yue X, Qiao D. Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155984. [PMID: 35588832 DOI: 10.1016/j.scitotenv.2022.155984] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have become harmful environmental pollutants, and their potential toxicity to organisms has attracted extensive attention. However, the effects of polyvinyl chloride MPs (PVC-MPs) on the liver and their associated mechanism in mice remain obscure. Here, male mice were exposed to 2-μm PVC-MPs (0.5 mg/day) for 60 days and then sacrificed, and their liver, blood and gut feces were subsequently collected for testing. The liver tissue and fecal samples were subjected to RNA sequencing and full-length 16S rRNA sequencing analysis, respectively. Our results showed that the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the mice exposed to PVC-MPs were markedly higher than those in the control group, implying hepatic injury, as evidenced by hepatic histopathological changes. Moreover, the serum and hepatic triglyceride (TG) and total bile acid (TBA) levels were decreased after exposure to PVC-MPs. The RNA sequencing of mouse liver tissue identified a total of 1540 differentially expressed genes (DEGs) associated with 47 pathways, including the lipid metabolic pathway, oxidative stress, and the phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, and these DEGs were enriched in the mouse livers. The full-length 16S rRNA sequencing analysis of the gut microbiota in mouse fecal samples revealed that PVC-MPs exposure decreased the relative abundance of probiotics and increased the abundance of conditionally pathogenic bacteria. In conclusion, chronic PVC-MPs exposure causes hepatotoxicity and gut microbiota dysbiosis in mice, and these findings provide new insight into the potential risks of PVC-MPs to human health.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Zhang Q, Taniguchi S, So K, Tsuda M, Higuchi Y, Hashida M, Yamashita F. CREB is a potential marker associated with drug-induced liver injury: Identification and validation through transcriptome database analysis. J Toxicol Sci 2022; 47:337-348. [PMID: 35922923 DOI: 10.2131/jts.47.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug-induced liver injury (DILI) is the main cause of failure in drug development and postapproval withdrawal. Although toxicogenomic techniques provide an unprecedented opportunity for mechanistic assessment and biomarker discovery, they are not suitable for the screening of large numbers of exploratory compounds in early drug discovery. Using a comprehensive analysis of toxicogenomics (TGx) data, we aimed to find DILI-relevant transcription factors (TFs) that could be incorporated into a reporter gene assay system. Gene set enrichment analysis (GSEA) of the Open TG-GATEs dataset highlighted 4 DILI-relevant TFs, including CREB, NRF2, ELK-1, and E2F. Using ten drugs with already assigned idiosyncratic toxicity (IDT) risks, reporter gene assays were conducted in HepG2 cells in the presence of the S9 mix. There were weak correlations between NRF2 activity and IDT risk, whereas strong correlations were observed between CREB activity and IDT risk. In addition, CREB activation associated with 3 Withdrawn/Black box Warning drugs was reversed by pretreatment with a PKA inhibitor. Collectively, we suggest that CREB might be a sensitive biomarker for DILI prediction, and its response to stress induced by high-risk drugs might be primarily regulated by the PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiyue Zhang
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shiori Taniguchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kanako So
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University.,Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
21
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
22
|
Chen Z, Zuo Z, Chen K, Yang Z, Wang F, Fang J, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Geng Y, Liu W, Deng H. Activated Nrf-2 Pathway by Vitamin E to Attenuate Testicular Injuries of Rats with Sub-chronic Cadmium Exposure. Biol Trace Elem Res 2022; 200:1722-1735. [PMID: 34173155 DOI: 10.1007/s12011-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd), a heavy metal element, cumulates in the testis and can cause male reproductive toxicity. Although vitamin E (VE) as one of potential antioxidants protects the testis against toxicity of Cd, the underlying mechanism remained uncompleted clear. The aim of this study was to investigate whether the Nrf-2 pathway is involved with the protective effect of VE on testicular damages caused by sub-chronic Cd exposure. Thirty-two SD rats were divided into four groups and orally administrated with VE and/or Cd for 28 consecutive days: control group, VE group (100 mg VE/kg), Cd group (5 mg CdCl2/kg), and VE + Cd group (100 mg VE/kg + 5 mg CdCl2/kg). The results showed that 28-day exposure of Cd caused accumulation of Cd, histopathological lesions, and alternations of sperm parameters (elevated rate of abnormal sperm, decreased count of sperm, declined motility, and viability of sperm). Moreover, the rats exposed to Cd showed significant oxidative stress (increased contents of MDA and decreased levels or activities of T-AOC, GSH, CAT, SOD and GSH-Px) and inhibition of Nrf-2 signaling pathway (downregulation of Nrf-2, HO-1, NQO-1, GCLC, GCLM and GST) of the testes. In contrast, VE treatment significantly reduced the Cd accumulation, alleviated histopathological lesions and dysfunctions, activated Nrf-2 pathway, and attenuated the oxidative stress caused by Cd in the testes of rats. In conclusion, VE, through upregulating Nrf-2 pathway, could protect testis against oxidative damages induced by sub-chronic Cd exposure.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
23
|
Cell-Based Antioxidant Properties and Synergistic Effects of Natural Plant and Algal Extracts Pre and Post Intestinal Barrier Transport. Antioxidants (Basel) 2022; 11:antiox11030565. [PMID: 35326215 PMCID: PMC8944961 DOI: 10.3390/antiox11030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, both direct and indirect cell-based antioxidant profiles were established for 27 plant extracts and 1 algal extract. To evaluate the direct antioxidant effects, fluorescent AOP1 cell assay was utilized, which measures the ability of different samples to neutralize intracellular free radicals produced by a cell-based photo-induction process. As the intestinal barrier is the first cell line crossed by the product, dose response curves obtained from Caco-2 cells were used to establish EC50 values for 26 out of the 28 natural extracts. Among them, 11 extracts from Vitis, Hamamelis, Syzygium, Helichrysum, Ilex and Ribes genera showed remarkable EC50s in the range of 10 µg/mL. In addition to this, a synergistic effect was found when combinations of the most potent extracts (S. aromaticum, H. italicum, H. virginiana, V. vinifera) were utilized compared to extracts alone. Indirect antioxidant activities (i.e., the ability of cells to trigger antioxidant defenses) were studied using the ARE/Nrf2 luminescence reporter-gene assay in HepG2 cells, as liver is the first organ crossed by an edible ingredient once it enters in the bloodstream. Twelve extracts were subjected to an intestinal epithelial barrier passage in order to partially mimic intestinal absorption and show whether basolateral compartments could maintain direct or indirect antioxidant properties. Using postepithelial barrier samples and HepG2 cells as a target model, we demonstrate that indirect antioxidant activities are maintained for three extracts, S. aromaticum, H. virginiana and H. italicum. Our experimental work also confirms the synergistic effects of combinations of post-intestinal barrier compartments issued from apical treatment with these three extracts. By combining cell-based assays together with an intestinal absorption process, this study demonstrates the power of cell systems to address the issue of antioxidant effects in humans.
Collapse
|
24
|
Hepatoprotective Role of 4-Octyl Itaconate in Concanavalin A-Induced Autoimmune Hepatitis. Mediators Inflamm 2022; 2022:5766434. [PMID: 35310452 PMCID: PMC8933104 DOI: 10.1155/2022/5766434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
4-Octyl itaconate (OI) is a novel anti-inflammatory metabolite that exerts protective effects in many various disease models. However, its function in autoimmune hepatitis- (AIH-) associated hepatic injury has not been investigated. In this study, we successfully used concanavalin A (Con A) to establish an AIH-associated liver injury model. Furthermore, we investigated the effect of OI in Con A-induced liver injury and found that OI mitigated Con A-induced histopathological damage. OI administration reduced serum levels of alanine transaminase and aspartate transaminase in Con A-treated mice and attenuated the infiltration of macrophages induced by Con A. Moreover, OI effectively inhibited the expression of proinflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and IL-1β induced by Con A. Furthermore, OI decreased hepatocyte apoptosis and malondialdehyde levels and increased the reduced glutathione/oxidized glutathione ratio in the Con A-induced liver injury model. In addition, we found that OI inhibited Con A-induced hepatocyte apoptosis in vitro, while Nrf2 deletion eliminated this effect. Furthermore, we administrated the Nrf2 inhibitor ML385 in OI+Con A-treated mice and found that ML385 eliminated the protective effect of OI in vivo. In addition, OI inhibited Con A-induced activation of nuclear factor-kappa B (NF-𝜅B) and the expression of proinflammatory cytokines in macrophages. Therefore, OI protected mice from Con A-induced liver damage and may be associated with Nrf2 activation and NF-𝜅B inhibition. Finally, our study revealed that OI inhibited TNF-α, or supernatants from Con A-treated RAW264.7 cells induced hepatocyte apoptosis. In conclusion, our study indicated that OI alleviated Con A-induced hepatic damage by reducing inflammatory response, oxidative stress, and apoptosis.
Collapse
|
25
|
Lau CH, Pendleton D, Drury NL, Zhao J, Li Y, Zhang R, Wright GA, Hoffmann AR, Johnson NM. NRF2 Protects against Altered Pulmonary T Cell Differentiation in Neonates Following In Utero Ultrafine Particulate Matter Exposure. Antioxidants (Basel) 2022; 11:202. [PMID: 35204086 PMCID: PMC8868442 DOI: 10.3390/antiox11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Early life exposure to particulate matter (PM) air pollution negatively impacts neonatal health. The underlying mechanisms following prenatal exposure, particularly to ultrafine particles (UFP, diameter ≤ 0.1 μm), are not fully understood; To evaluate the role of Nrf2 in response to in utero UFP exposure, we exposed time-mated Nrf2-deficient (Nrf2-/-) or wildtype (WT) mice to filtered air (FA) or 100 μg/m3 ultrafine PM daily throughout pregnancy. Offspring were evaluated for pulmonary immunophenotypes and pulmonary/systemic oxidative stress on postnatal day 5, a timepoint at which we previously demonstrated viral respiratory infection susceptibility; Nrf2-/- offspring exposed to FA had significantly lower average body weights compared to FA-exposed WT pups. Moreover, PM-exposed Nrf2-/- offspring weighed significantly less than PM-exposed WT pups. Notably, PM-exposed Nrf2-/- offspring showed a decreased pulmonary Th1/Th2 ratio, indicating a Th2 bias. Th17 cells were increased in FA-exposed Nrf2-/- neonates yet decreased in PM-exposed Nrf2-/- neonates. Analysis of oxidative stress-related genes in lung and oxidative stress biomarkers in liver tissues did not vary significantly across exposure groups or genotypes. Collectively, these findings indicate that the lack of Nrf2 causes growth inhibitory effects in general and in response to gestational UFP exposure. Prenatal UFP exposure skews CD4+ T lymphocyte differentiation toward Th2 in neonates lacking Nrf2, signifying its importance in maternal exposure and infant immune responses.
Collapse
Affiliation(s)
- Carmen H. Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Nicholas L. Drury
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Jiayun Zhao
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gus A. Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
- Flow Cytometry Facility, Texas A&M University, College Station, TX 77843, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL 32653, USA;
| | - Natalie M. Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| |
Collapse
|
26
|
Shi J, Weng JH, Mitchison TJ. Immunomodulatory drug discovery from herbal medicines: Insights from organ-specific activity and xenobiotic defenses. eLife 2021; 10:e73673. [PMID: 34779403 PMCID: PMC8592567 DOI: 10.7554/elife.73673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Traditional herbal medicines, which emphasize a holistic, patient-centric view of disease treatment, provide an exciting starting point for discovery of new immunomodulatory drugs. Progress on identification of herbal molecules with proven single agent activity has been slow, in part because of insufficient consideration of pharmacology fundamentals. Many molecules derived from medicinal plants exhibit low oral bioavailability and rapid clearance, leading to low systemic exposure. Recent research suggests that such molecules can act locally in the gut or liver to activate xenobiotic defense pathways that trigger beneficial systemic effects on the immune system. We discuss this hypothesis in the context of four plant-derived molecules with immunomodulatory activity: indigo, polysaccharides, colchicine, and ginsenosides. We end by proposing research strategies for identification of novel immunomodulatory drugs from herbal medicine sources that are informed by the possibility of local action in the gut or liver, leading to generation of systemic immune mediators.
Collapse
Affiliation(s)
- Jue Shi
- Centre for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist UniversityHong KongChina
| | - Jui-Hsia Weng
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | | |
Collapse
|
27
|
Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res 2021; 44:839-856. [PMID: 34664210 DOI: 10.1007/s12272-021-01352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by abnormal accumulation of extracellular matrix, which can affect virtually every organ system under diseased conditions. Fibrotic tissue remodeling often leads to organ dysfunction and is highly associated with increased morbidity and mortality. The disease burden caused by fibrosis is substantial, and the medical need for effective antifibrotic therapies is essential. Significant progress has been made in understanding the molecular mechanism and pathobiology of fibrosis, such as transforming growth factor-β (TGF-β)-mediated signaling pathways. However, owing to the complex and dynamic properties of fibrotic disorders, there are currently no therapeutic options that can prevent or reverse fibrosis. Recent studies have revealed that alterations in fatty acid metabolic processes are common mechanisms and core pathways that play a central role in different fibrotic disorders. Excessive lipid accumulation or defective fatty acid oxidation is associated with increased lipotoxicity, which directly contributes to the development of fibrosis. Genetic alterations or pharmacologic targeting of fatty acid metabolic processes have great potential for the inhibition of fibrosis development. Furthermore, mechanistic studies have revealed active interactions between altered metabolic processes and fibrosis development. Several well-known fibrotic factors change the lipid metabolic processes, while altered metabolic processes actively participate in fibrosis development. This review summarizes the recent evidence linking fatty acid metabolism and fibrosis, and provides new insights into the pathogenesis of fibrotic diseases for the development of drugs for fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
28
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
29
|
The Impact of Diet and Exercise on Drug Responses. Int J Mol Sci 2021; 22:ijms22147692. [PMID: 34299312 PMCID: PMC8304791 DOI: 10.3390/ijms22147692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
It is well known that lifestyle changes can alter several physiological functions in the human body. For exercise and diet, these effects are used sensibly in basic therapies, as in cardiovascular diseases. However, the physiological changes induced by exercise and a modified diet also have the capacity to influence the efficacy and toxicity of several drugs, mainly by affecting different pharmacokinetic mechanisms. This pharmacological plasticity is not clinically relevant in all cases but might play an important role in altering the effects of very common drugs, particularly drugs with a narrow therapeutic window. Therefore, with this review, we provide insights into possible food–drug and exercise–drug interactions to sharpen awareness of the potential occurrence of such effects.
Collapse
|
30
|
Enzyme-Treated Zizania latifolia Extract Protects against Alcohol-Induced Liver Injury by Regulating the NRF2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060960. [PMID: 34203789 PMCID: PMC8232714 DOI: 10.3390/antiox10060960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Binge drinking patterns easily produce a state of oxidative stress that disturbs liver function. Eventually, this leads to alcoholic liver disease. A safe and effective therapy for alcoholic liver disease remains elusive. Enzyme-treated Z. latifolia extract (ETZL) was studied as a potential agent for treating alcohol-induced liver disease. In addition, its underlying mechanisms were elucidated. In the binge model, ETZL was pretreated with alcohol (5 g/kg) three times at 12-h intervals. Our results showed that ETZL pretreatment decreased the serum levels of ALT, AST, ALP, and TG. ETZL treatment appeared to prevent an increase in hepatic TG and MDA levels, and there was a decrease in total GSH following alcohol treatment. Histopathological examination showed that lipid droplets were significantly reduced in the ETZL group compared to the control group. ETZL also exhibited radical scavenging activity. It significantly reduced t-BHP-induced cytotoxicity and the production of reactive oxygen species (ROS) in HepG2 cells. ETZL also enhanced NRF2 nuclear translocation and increased expression of the downstream target genes HO-1, NQO1, and GCLC as an antioxidant defense. Finally, ETZL treatment significantly reduced cell death. Our study suggests that ETZL ameliorates binge ethanol-induced liver injury by upregulating the antioxidant defense mechanism.
Collapse
|
31
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
32
|
Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021; 44:263-280. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.
Collapse
Affiliation(s)
- Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
33
|
Abstract
It is now well understood that the eukaryotic host has evolved multiple mechanisms to monitor and respond to the diverse and biochemically active microbiota that thrives in a symbiotic fashion in the gut and other tissues. Generally, these mechanisms are based on traditional notions of innate and adaptive immune processes, which are mediated by recognition of, and response to, microbially derived macromolecules. Microbes themselves are metabolically active and contribute a vast array of small molecules, not present in germ-free model systems, with diverse putative and unknown biological function, and intensive work is ongoing to unravel their roles in physiological systems. Metazoans have evolved and maintain distinct gene regulatory networks to detect and respond to environmental, non-self-molecules (xenobiotics), and interestingly, recent investigation has shown that these pathways are operational in the detection and response to microbiota-derived small metabolites. These processes likely represent a general mechanism of host-microbe crosstalk, and they have clinical implications in drug and xenobiotic metabolism.
Collapse
Affiliation(s)
- Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Nguyen TLL, Huynh DTN, Jin Y, Jeon H, Heo KS. Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway. Arch Pharm Res 2021; 44:241-252. [PMID: 33537886 DOI: 10.1007/s12272-020-01304-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Systemic or hepatic inflammation is caused by intraperitoneal application of lipopolysaccharide (LPS). In this study, we investigated anti-inflammatory and antioxidant properties of combination of ginsenoside-Rg2 (G-Rg2) and -Rh1 (G-Rh1) on liver function under LPS challenging. We first confirmed that G-Rg2 and -Rh1 at 100 μg/ml did not show cytotoxicity in HepG2 cells. G-Rg2 and -Rh1 treatment significantly inhibited activation of STAT3 and TAK1, and inflammatory factors including iNOS, TNF-α, and IL-1β in peritoneal macrophages. In HepG2 cells, G-Rg2 and -Rh1 treatment inhibited activation of STAT3 and TAK1/c-Jun N-terminal kinase, and down-regulated nuclear translocation of NF-κB transcription factor. In addition, LPS-induced mitochondrial dysfunction was restored by treatment with G-Rg2 and -Rh1. Interestingly, pretreatment with G-Rg2 and -Rh1 effectively inhibited mitochondrial damage-mediated ROS production induced by LPS stimulation, and alterations of Nrf2 nuclear translocation and ARE promotor activity were involved in G-Rg2 and -Rh1 effects on balancing ROS levels. In liver tissues of LPS-treated mice, G-Rg2 and -Rh1 treatment protected liver damages and increased Nrf2 expression while reducing CD45 expression. Taken together, G-Rg2 and -Rh1 exerts a protective effect on liver function by increasing antioxidant through Nrf2 and anti-inflammatory activities through STAT3/TAK1 and NF-κB signaling pathways in liver cells and macrophages.
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.,Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Hyesu Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
35
|
Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, Maimouni S, Daguplo HQ, Coppola S, Gao Y, Wang Y, Du Z, Peng K, Liu H, Zhang Q, Tang F, Wang P, Gao S, Wang Y, Ding WX, Guo G, Wang F, Zong WX. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol 2021; 11:1369-1385. [PMID: 33482392 PMCID: PMC8024979 DOI: 10.1016/j.jcmgh.2021.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS TRIM21 is a ubiquitin E3 ligase that is implicated in numerous biological processes including immune response, cell metabolism, redox homeostasis, and cancer development. We recently reported that TRIM21 can negatively regulate the p62-Keap1-Nrf2 antioxidant pathway by ubiquitylating p62 and prevents its oligomerization and protein sequestration function. As redox homeostasis plays a pivotal role in many cancers including liver cancer, we sought to determine the role of TRIM21 in hepatocarcinogenesis. METHODS We examined the correlation between TRIM21 expression and the disease using publicly available data sets and 49 cases of HCC clinical samples. We used TRIM21 genetic knockout mice to determine how TRIM21 ablation impact HCC induced by the carcinogen DEN plus phenobarbital (PB). We explored the mechanism that loss of TRIM21 protects cells from DEN-induced oxidative damage and cell death. RESULTS There is a positive correlation between TRIM21 expression and HCC. Consistently, TRIM21-knockout mice are resistant to DEN-induced hepatocarcinogenesis. This is accompanied by decreased cell death and tissue damage upon DEN treatment, hence reduced hepatic tissue repair response and compensatory proliferation. Cells deficient in TRIM21 display enhanced p62 sequestration of Keap1 and are protected from DEN-induced ROS induction and cell death. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient mutant TRIM21 impedes the protection from DEN-induced oxidative damage and cell death in TRIM21-deficient cells. CONCLUSIONS Increased TRIM21 expression is associated with human HCC. Genetic ablation of TRIM21 leads to protection against oxidative hepatic damage and decreased hepatocarcinogenesis, suggesting TRIM21 as a preventive and therapeutic target.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Ye Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Bin Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Weiwei Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Heineken Q Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Coppola
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Zhi Du
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Kesong Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Qin Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Fei Tang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
36
|
Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:251-275. [PMID: 33234022 DOI: 10.1146/annurev-pathol-030320-095722] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| |
Collapse
|
37
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
38
|
Chartoumpekis DV, Ziros PG, Georgakopoulos-Soares I, Smith AAT, Marques AC, Ibberson M, A. Kopp P, Habeos I, Trougakos IP, Khoo NKH, Sykiotis GP. The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System. Antioxidants (Basel) 2020; 9:antiox9090884. [PMID: 32961913 PMCID: PMC7555824 DOI: 10.3390/antiox9090884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves’ disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves’ disease) and PTC.
Collapse
Affiliation(s)
- Dionysios V. Chartoumpekis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.); (P.A.K.)
- Division of Endocrinology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece;
| | - Panos G. Ziros
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.); (P.A.K.)
| | - Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA;
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam A. T. Smith
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; (A.A.T.S.); (A.C.M.)
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; (A.A.T.S.); (A.C.M.)
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| | - Peter A. Kopp
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.); (P.A.K.)
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece;
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Nicholas K. H. Khoo
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Gerasimos P. Sykiotis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.); (P.A.K.)
- Correspondence: ; Tel.: +41-21-314-0606
| |
Collapse
|
39
|
Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9080716. [PMID: 32784785 PMCID: PMC7464243 DOI: 10.3390/antiox9080716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to organismal homeostasis is seen in many studies using cell lines and animal models, raising intense attention towards targeting its clinical promise. Over the last three decades, an expanding number of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases. Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four lead clinical compounds do touch the NRF2 pathway in humans.
Collapse
|