1
|
Duong NX, Nguyen T, Le MK, Sawada N, Kira S, Kondo T, Inukai T, Mitsui T. NAA10 gene expression is associated with mesenchymal transition, dedifferentiation, and progression of clear cell renal cell carcinoma. Pathol Res Pract 2024; 255:155191. [PMID: 38340582 DOI: 10.1016/j.prp.2024.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION We aimed to investigate the expression and prognostic role of NAA10 in clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS We performed a gene expression and survival analysis based on the human cancer genome atlas database of ccRCC patients (TCGA-KIRC). RESULTS The patients in the TCGA-KIRC (n = 537) were divided into two subgroups: NAA10-low and NAA10-high expression groups. NAA10-high ccRCC exhibited higher T stages (p = 0.002), a higher frequency of distant metastasis (p = 0.018), more advanced AJCC stages (p < 0.001), a lower overall survival time (p = 0.036), and a lower survival rate (p < 0.001). NAA10-high ccRCC was associated with increased activity of non-specific oncogenic pathways, including oxidative phosphorylation (p < 0.001) and cell cycle progression [G2 to M phase transition (p = 0.045) and E2F targets (p < 0.001)]. Additionally, the NAA10-high tumors showed reduced apoptosis via TRIAL pathways (p < 0.001) and increased levels of activity that promoted epithelial-mesenchymal transition (p = 0.026) or undifferentiation (p = 0.01). In ccRCC, NAA10 expression was found to be a negative prognostic factor in both non-metastatic (p < 0.001) and metastatic tumors (p = 0.032). CONCLUSIONS In ccRCC, NAA10 expression was shown to be a negative prognostic factor related to tumor progression rather than tumor initiation, and high NAA10 expression promoted epithelial-mesenchymal transition and undifferentiation.
Collapse
Affiliation(s)
- Nguyen Xuong Duong
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan; Department of Urology, Cho Ray Hospital, Ho Chi Minh city, Vietnam.
| | - Thao Nguyen
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Minh-Khang Le
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Norifumi Sawada
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Satoru Kira
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| |
Collapse
|
2
|
Zhou N, Mao F, Cheng S. Mechanism Research and Application for Ginsenosides in the Treatment of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7214037. [PMID: 38027042 PMCID: PMC10667047 DOI: 10.1155/2023/7214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Ginsenosides, the main active pharmacological ingredients of ginseng, have been widely used for the treatment of numerous carcinomas. Hepatocellular carcinoma (HCC) is 3rd leading malignant tumor in terms of mortality worldwide. Accumulating evidence indicates that ginsenosides play a vital role in the prevention and treatment of HCC. Ginsenosides can significantly improve the symptoms of HCC, and their anticancer activity is mainly involved in inhibiting proliferation and migration, inducing cell cycle arrest at the G0/G1 phase, promoting caspase-3 and 8-mediated apoptosis, regulating autophagy related to Atg5, Atg7, Atg12, LC3-II, and PI3K/Akt pathways, and lowering invasion and metastasis associated with decreased nuclear translocation of NF-κB p65 and MMP-2/9, increasing IL-2 and IFN-γ levels to enhance immune function, as well as regulating the gut-liver axis. In addition, ginsenosides can be used as an adjuvant to conventional cancer therapies, enhancing sensitivity to chemotherapy drugs, and improving efficacy and/or reducing adverse reactions through synergistic effects. Therefore, the current manuscript discusses the mechanism and application of ginsenosides in HCC. It is hoped to provide theoretical basis for the treatment of HCC with ginsenosides.
Collapse
Affiliation(s)
- Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuqun Cheng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
| |
Collapse
|
3
|
Lyon GJ, Vedaie M, Beisheim T, Park A, Marchi E, Gottlieb L, Hsieh TC, Klinkhammer H, Sandomirsky K, Cheng H, Starr LJ, Preddy I, Tseng M, Li Q, Hu Y, Wang K, Carvalho A, Martinez F, Caro-Llopis A, Gavin M, Amble K, Krawitz P, Marmorstein R, Herr-Israel E. Expanding the phenotypic spectrum of NAA10-related neurodevelopmental syndrome and NAA15-related neurodevelopmental syndrome. Eur J Hum Genet 2023; 31:824-833. [PMID: 37130971 PMCID: PMC10325952 DOI: 10.1038/s41431-023-01368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.
Collapse
Affiliation(s)
- Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| | - Marall Vedaie
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Travis Beisheim
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Agnes Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Katherine Sandomirsky
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | | | - Lois J Starr
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Preddy
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marcellus Tseng
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ana Carvalho
- Department of Medical Genetics, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Francisco Martinez
- Unidad de Genetica, Hospital Universitario y Politecnico La Fe, 46026, Valencia, Spain
| | - Alfonso Caro-Llopis
- Grupo de Investigacion Traslacional en Genetica, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Maureen Gavin
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Karen Amble
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Herr-Israel
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
4
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
5
|
Park SJ, Joo SH, Lee N, Jang WJ, Seo JH, Jeong CH. ACY-241, an HDAC6 inhibitor, overcomes erlotinib resistance in human pancreatic cancer cells by inducing autophagy. Arch Pharm Res 2021; 44:1062-1075. [PMID: 34761352 DOI: 10.1007/s12272-021-01359-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a promising target for cancer treatment because it regulates cell mobility, protein trafficking, cell growth, apoptosis, and metastasis. However, the mechanism of HDAC6-induced anticancer drug resistance is unclear. In this study, we evaluated the anticancer effect of ACY-241, an HDAC6-selective inhibitor, on erlotinib-resistant pancreatic cancer cells that overexpress HDAC6. Our data revealed that ACY-241 hyperacetylated the HDAC6 substrate, α-tubulin, leading to a significant reduction in cell viability of erlotinib-resistant pancreatic cells, BxPC3-ER and HPAC-ER. Notably, a synergistic anticancer effect was observed in cells that received combined treatment with ACY-241 and erlotinib. Combined treatment effectively induced autophagy and inhibited autophagy through siLC3B, and siATG5 alleviated ACY-241-mediated cell death, as reflected by the recovery of PARP cleavage and apoptosis rates. In addition, combined ACY-241 and erlotinib treatment induced autophagy and subsequently, cell death by reducing AKT-mTOR activity and increasing phospho-AMPK signaling. Therefore, HDAC6 may be involved in the suppression of autophagy and acquisition of resistance to erlotinib in ER pancreatic cancer cells. ACY-241 to overcome erlotinib resistance could be an effective therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Seong-Jun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Sang Hoon Joo
- Department of Pharmacy, Daegu Catholic University, Gyeongsan, 38430, South Korea
| | - Naeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, 1095 Dalgubeil-daero, Daegu, 42601, South Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea.
| |
Collapse
|
6
|
The FGFR Family Inhibitor AZD4547 Exerts an Antitumor Effect in Ovarian Cancer Cells. Int J Mol Sci 2021; 22:ijms221910817. [PMID: 34639155 PMCID: PMC8509426 DOI: 10.3390/ijms221910817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of fibroblast growth factor (FGF) signaling has been implicated in tumorigenesis, tumor progression, angiogenesis, and chemoresistance. The small-molecule AZD4547 is a potent inhibitor of FGF receptors. This study was performed to investigate the antitumor effects and determine the mechanistic details of AZD4547 in ovarian cancer cells. AZD4547 markedly inhibited the proliferation and increased the apoptosis of ovarian cancer cells. AZD4547 also suppressed the migration and invasion of ovarian cancer cells under nontoxic conditions. Furthermore, it attenuated the formation of spheroids and the self-renewal capacities of ovarian cancer stem cells and exerted an antiangiogenic effect. It also suppressed in vivo tumor growth in mice. Collectively, this study demonstrated the antitumor effect of AZD4547 in ovarian cancer cells and suggests that it is a promising agent for ovarian cancer therapy.
Collapse
|
7
|
Koufaris C, Kirmizis A. Identification of NAA40 as a Potential Prognostic Marker for Aggressive Liver Cancer Subtypes. Front Oncol 2021; 11:691950. [PMID: 34150665 PMCID: PMC8208081 DOI: 10.3389/fonc.2021.691950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.
Collapse
|
8
|
NAA10 as a New Prognostic Marker for Cancer Progression. Int J Mol Sci 2020; 21:ijms21218010. [PMID: 33126484 PMCID: PMC7663132 DOI: 10.3390/ijms21218010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is an acetyltransferase that acetylates both N-terminal amino acid and internal lysine residues of proteins. NAA10 is a crucial player to regulate cell proliferation, migration, differentiation, apoptosis, and autophagy. Recently, mounting evidence presented the overexpression of NAA10 in various types of cancer, including liver, bone, lung, breast, colon, and prostate cancers, and demonstrated a correlation of overexpressed NAA10 with vascular invasion and metastasis, thereby affecting overall survival rates of cancer patients and recurrence of diseases. This evidence all points NAA10 toward a promising biomarker for cancer prognosis. Here we summarize the current knowledge regarding the biological functions of NAA10 in cancer progression and provide the potential usage of NAA10 as a prognostic marker for cancer progression.
Collapse
|
9
|
Jin Y, Huynh DTN, Nguyen TLL, Jeon H, Heo KS. Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch Pharm Res 2020; 43:773-787. [PMID: 32839835 DOI: 10.1007/s12272-020-01265-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cause of cancer-related deaths among women worldwide. Thus, the development of new and effective low-toxicity drugs is vital. The specific characteristics of breast cancer have allowed for the development of targeted therapy towards each breast cancer subtype. Nevertheless, increasing drug resistance is displayed by the changing phenotype and microenvironments of the tumor through mutation or dysregulation of various mechanisms. Recently, emerging data on the therapeutic potential of biocompounds isolated from ginseng have been reported. Therefore, in this review, various roles of ginsenosides in the treatment of breast cancer, including apoptosis, autophagy, metastasis, epithelial-mesenchymal transition, epigenetic changes, combination therapy, and drug delivery system, have been discussed.
Collapse
Affiliation(s)
- Yujin Jin
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Diem Thi Ngoc Huynh
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Thuy Le Lam Nguyen
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Hyesu Jeon
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea. .,Institute of Drug Research & Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Chun KH, Cho SJ, Lee JW, Seo JH, Kim KW, Lee SK. Protein kinase C-δ interacts with and phosphorylates ARD1. J Cell Physiol 2020; 236:379-391. [PMID: 32542692 DOI: 10.1002/jcp.29866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/07/2022]
Abstract
Protein kinase C-δ (PKCδ) is a diacylglycerol-dependent, calcium-independent novel PKC isoform that is engaged in various cell signaling pathways, such as cell proliferation, apoptosis, inflammation, and oxidative stress. In this study, we searched for proteins that bind PKCδ using a yeast two-hybrid assay and identified murine arrest-defective 1 (mARD1) as a binding partner. The interaction between PKCδ and mARD1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays. Furthermore, recombinant PKCδ phosphorylated full-length mARD1 protein. The NetPhos online prediction tool suggested PKCδ phosphorylates Ser80 , Ser108 , and Ser114 residues of mARD1 with the highest probability. Based on these results, we synthesized peptides containing these sites and examined their phosphorylations using recombinant PKCδ. Autoradiography confirmed these sites were efficiently phosphorylated. Consequent mass spectrometry and peptide sequencing in combination with MALDI-TOF MS/MS confirmed that Ser80 and Ser108 were major phosphorylation sites. The alanine mutations of Ser80 and Ser108 abolished the phosphorylation of mARD1 by PKCδ in 293T cells supporting these observations. In addition, kinase assays using various PKC isotypes showed that Ser80 of ARD1 was phosphorylated by PKCβI and PKCζ isotypes with the highest selectivity, while Ser108 and/or Ser114 were phosphorylated by PKCγ with activities comparable to that of the PKCδ isoform. Overall, these results suggest the possibility that PKCδ transduces signals by regulating phosphorylation of ARD1.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Ju Cho
- Division of Drug Safety Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Ji-Won Lee
- Preclinical Studies, GlycoMimetics Inc., Rockville, Maryland
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kyu-Won Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ki Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Vo TTL, Park JH, Lee EJ, Nguyen YTK, Han BW, Nguyen HTT, Mun KC, Ha E, Kwon TK, Kim KW, Jeong CH, Seo JH. Characterization of Lysine Acetyltransferase Activity of Recombinant Human ARD1/NAA10. Molecules 2020; 25:molecules25030588. [PMID: 32013195 PMCID: PMC7036845 DOI: 10.3390/molecules25030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/04/2023] Open
Abstract
Arrest defective 1 (ARD1), also known as N(alpha)-acetyltransferase 10 (NAA10) was originally identified as an N-terminal acetyltransferase (NAT) that catalyzes the acetylation of N-termini of newly synthesized peptides. After that, mammalian ARD1/NAA10 expanded its' role to lysine acetyltransferase (KAT) that post-translationally acetylates internal lysine residues of proteins. ARD1/NAA10 is the only enzyme with both NAT and KAT activities. However, recent studies on the role of human ARD1/NAA10 (hARD1/NAA10) in lysine acetylation are contradictory, as crystal structure and in vitro acetylation assay results revealed the lack of KAT activity. Thus, the role of hARD1/NAA10 in lysine acetylation is still debating. Here, we found a clue that possibly explains these complicated and controversial results on KAT activity of hARD1/NAA10. Recombinant hARD1/NAA10 exhibited KAT activity, which disappeared soon in vitro. Size-exclusion analysis revealed that most recombinant hARD1/NAA10 formed oligomers over time, resulting in the loss of KAT activity. While oligomeric recombinant hARD1/NAA10 lost its ability for lysine acetylation, its monomeric form clearly exhibited lysine acetylation activity in vitro. We also characterized the KAT activity of hARD1/NAA10 that was influenced by several experimental conditions, including concentration of reactants and reaction time. Taken together, our study proves that recombinant hARD1/NAA10 exhibits KAT activity in vitro but only under accurate conditions, including reactant concentrations and reaction duration.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (T.T.L.V.); (H.T.T.N.); (K.C.M.); (E.H.)
| | - Ji-Hyeon Park
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (J.-H.P.); (E.J.L.)
| | - Eun Ji Lee
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (J.-H.P.); (E.J.L.)
| | - Yen Thi Kim Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (Y.T.K.N.); (B.W.H.); (K.-W.K.)
| | - Byung Woo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (Y.T.K.N.); (B.W.H.); (K.-W.K.)
| | - Hien Thi Thu Nguyen
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (T.T.L.V.); (H.T.T.N.); (K.C.M.); (E.H.)
| | - Kyo Cheol Mun
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (T.T.L.V.); (H.T.T.N.); (K.C.M.); (E.H.)
| | - Eunyoung Ha
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (T.T.L.V.); (H.T.T.N.); (K.C.M.); (E.H.)
| | - Taeg Kyu Kwon
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (Y.T.K.N.); (B.W.H.); (K.-W.K.)
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Correspondence: (C.-H.J.); (J.H.S.); Tel.: +82-53-580-6638 (C.-H.J.); +82-53-258-7436 (J.H.S.)
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (T.T.L.V.); (H.T.T.N.); (K.C.M.); (E.H.)
- Correspondence: (C.-H.J.); (J.H.S.); Tel.: +82-53-580-6638 (C.-H.J.); +82-53-258-7436 (J.H.S.)
| |
Collapse
|