1
|
Guo T, Xiong L, Xie J, Zeng J, Huang Z, Yao M, Zhang X, Mo J. TLR2 promotes traumatic deep venous thrombosis of the lower extremity following femoral fracture by activating the NF‑κB/COX‑2 signaling pathway in rats. Exp Ther Med 2024; 28:436. [PMID: 39355523 PMCID: PMC11443593 DOI: 10.3892/etm.2024.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/28/2024] [Indexed: 10/03/2024] Open
Abstract
Endothelial cells (ECs) are crucial for maintaining the integrity of blood vessel walls and reducing thrombosis. Deep venous thrombosis (DVT) is a common thrombotic disease and its diagnosis and treatment remain at the stage of coagulation function examination and post-onset treatment. Thus, identifying the pathogenesis of DVT is important. The present study investigated the significance of the Toll-like receptor 2 (TLR2)/nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2) signaling pathway in a human umbilical vein EC (HUVECs) oxygen glucose deprivation (OGD) model and femoral fractures were induced in anesthetized rats using a quantifiable impact device delivering 5 J of energy to each side of the proximal outer thigh, followed by external fixation with a hip spica cast to create a traumatic deep venous thrombosis (TDVT) animal model. Rats were subjected to quantitative impact fixation to establish a TDVT model. The rats were treated with a TLR2 agonist (Pam3CSK4) and a TLR2 inhibitor (C29) via intraperitoneal injection and thrombus formation was examined. HUVECs were subjected to OGD and treated with Pam3CSK4 or C29 and cell viability and apoptosis were assessed. Western blotting, immunofluorescence and reverse transcription-quantitative PCR were used to examine the inflammatory responses and signaling pathways. In vivo experiments showed that Pam3CSK4 promoted thrombus formation and increased the mRNA and protein expression of NF-κB, COX-2, Tissue factor (TF), IL-6 and P-selectin compared with the model and C29 groups. In vitro experiments showed that Pam3CSK4 treatment resulted in a higher number of apoptotic cells than C29 treatment and that it increased the levels of NF-κB, COX-2, IL-6 and P-selectin, whereas C29 decreased them. Thus, TLR2 promotes the inflammatory response in EC through the NF-κB/COX-2 signaling pathway, which may lead to EC apoptosis and the occurrence of TDVT.
Collapse
Affiliation(s)
- Tianting Guo
- Department of Orthopedics, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Lijiao Xiong
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Department of Geriatrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Junbin Xie
- Department of Orthopedics, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Jiwei Zeng
- Department of Orthopedics, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Mengting Yao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaoan Zhang
- Department of Orthopedics, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianwen Mo
- Department of Geriatrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
2
|
Roy M, Shourove JH, Singha R, Tonmoy TA, Chandra Biswas G, Meem FC, John PH, Samadder M, Al Faik MA. Assessment of antioxidant and antibacterial efficacy of some indigenous vegetables consumed by the Manipuri community in Sylhet, Bangladesh. Heliyon 2024; 10:e37750. [PMID: 39315213 PMCID: PMC11417267 DOI: 10.1016/j.heliyon.2024.e37750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The rapid dietary changes experienced by indigenous people worldwide threaten the use of traditional foods, which are often undervalued. This study focused on evaluating the antioxidant and antibacterial efficacy of five vegetables typically consumed by the Manipuri ethnic groups in the Sylhet region of Bangladesh: Yongchak seed (Parkia speciosa), Telikadam seed (Leucaena leucocephala), Phakphai leaf (Persicaria odorata), Sheuli leaf (Nyctanthes arbor-tristis), and bamboo shoot (Bambusa spp.). The samples were dried and powdered to assess the antioxidant activity through total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Antibacterial efficacy was determined by measuring the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Leafy vegetables exhibited higher TPC, TFC, and TTC than seeds and shoots, with N. arbor-tristis leaf showing the highest TPC (99.16 ± 2.07 mg GAE/g DW) and P. odorata leaf exhibiting the highest TFC (9.19 ± 0.7 mg QE/g) and TTC (3.59 ± 0.26 mg TAE/g). However, Bambusa spp. shoot extract showed the highest antioxidant potential (IC50: 1.66 ± 0.05 mg/mL). All samples exhibited higher ZOI against gram-positive bacteria (Bacillus spp. and Staphylococcus spp.), ranging from 10 ± 2.65 to 19.33 ± 2.08 mm. L. leucocephala seed extract showed the highest antibacterial activity against both the tested gram-positive bacteria with a MIC of 15.6 mg/mL. Conversely, the P. odorata leaf extract exerted the strongest antibacterial effect against gram-negative bacteria, with the lowest MIC values for Klebsiella spp. (31.25 mg/mL) and Escheria coli (62.5 mg/mL). The findings of this investigation suggest that the selected indigenous vegetables could be valuable sources of phytochemicals with potential antioxidant and antibacterial activities. Incorporating and promoting these traditional foods into the diet may improve food security, dietary diversity, and public health in Bangladesh.
Collapse
Affiliation(s)
- Mukta Roy
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rhythm Singha
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tawkir Ahmed Tonmoy
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Gokul Chandra Biswas
- Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Parvej Hasan John
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mitu Samadder
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Azmain Al Faik
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
3
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
4
|
Zou J, Xu W, Li Z, Gao P, Zhang F, Cui Y, Hu J. Network pharmacology-based approach to research the effect and mechanism of Si-Miao-Yong-An decoction against thromboangiitis obliterans. Ann Med 2023; 55:2218105. [PMID: 37318081 DOI: 10.1080/07853890.2023.2218105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Si-Miao-Yong-An decoction (SMYAD) is a conventional therapeutic formula for treat thromboangiitis obliterans (TAO), consisting of four Chinese herbs: Lonicerae japonicae Thunb. (Jinyinhua), Scrophularia ningpoensis Hemsl. (Xuanshen), Angelica sinensis (Oliv.) Diels (Danggui) and Glycyrrhiza uralensis Fisch. (Gancao). However, the mechanism of SMYAD in TAO treatment remains unclear. METHODS Components, as well as potential targets of SMYAD in TAO therapy, were downloaded from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Subsequently, with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signalling pathways of the targets enrichment were performed. Next, based on STRING online database, the protein interaction network of vital targets was built and analysed. Molecular docking and calculation of the binding affinity were performed using AutoDock. The PyMOL software was employed to observe docking outcomes of active compounds and protein targets. Based on the predicted outcomes of network pharmacology, in vivo and in vitro tests were performed for validation. In vivo experiment, the TAO rats model was established using sodium laurate injection into the femoral artery. The symptoms as well as pathological changes of the femoral artery were observed. Besides, the predicted targets were verified by the RT-qPCR, in vitro experiment. The cell viability in LPS-induced human umbilical vein endothelial cells (HUVECs) was detected using CCK-8 kit, and the predicted targets were also verified by the RT-qPCR. RESULTS In the network pharmacology analysis, we obtained 105 chemical components in SMYAD and 24 therapeutic targets. We found that the mechanism SMYAD in TAO therapy was primarily associated with inflammation and angiogenesis by constructing multiple networks. Quercetin, vestitol and beta-sitosterol were important compounds, and interleukin-6 (IL6), MMP9, and VEGFA were key targets. According to molecular docking, active compounds (quercetin, vestitol and beta-sitosterol) and targets (IL6, MMP9 and VEGFA) showed good binding interactions. In in vivo experiment, SMYAD ameliorated the physical signs and pathological changes, inhibited the expression of IL6 and MMP9, and enhanced the expression of VEGFA. In an in vitro experiment, SMYAD increased the cell viability of LPS-induced HUVECs and the expression of VEGFA, and reduced the expression of IL6 and MMP9. CONCLUSIONS This study showed that SMYAD improves TAO symptoms and inhibits the development of TAO. The mechanism could be associated with anti-inflammatory and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Jiaxi Zou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiming Xu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangyuan Zhang
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| | - Yuting Cui
- Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingqing Hu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
He G, Chen G, Liu W, Ye D, Liu X, Liang X, Song J. Salvianolic Acid B: A Review of Pharmacological Effects, Safety, Combination Therapy, New Dosage Forms, and Novel Drug Delivery Routes. Pharmaceutics 2023; 15:2235. [PMID: 37765204 PMCID: PMC10538146 DOI: 10.3390/pharmaceutics15092235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Guangfeng Chen
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Jing Song
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd., Dezhou 251200, China
| |
Collapse
|
7
|
Yin Q, Zhang X, Liao S, Huang X, Wan CC, Wang Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154880. [PMID: 37267694 DOI: 10.1016/j.phymed.2023.154880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Anticoagulants are the main drugs used for the prevention and treatment of thrombosis. Currently, anticoagulant drugs are primarily multitarget heparin drugs, single-target FXa inhibitors and FIIa inhibitors. In addition, some traditional Chinese drugs also have anticoagulant effects, but they are not the main direction of treatment at present. But the anticoagulant drugs mentioned above, all have a common side effect is bleeding. Many other anticoagulation targets are under investigation. With further exploration of coagulation mechanism, how to further determine new anticoagulant targets and how to make traditional Chinese medicine play anticoagulant role have become a new field of exploration. PURPOSE The purpose of the study was to summarize the recent research progress on coagulation mechanisms, new anticoagulant targets and traditional Chinese medicine. METHODS A comprehensive literature search was conducted using four electronic databases, including PubMed, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the study to 28 Feb 2023. Key words used in the literature search were "anticoagulation", "anticoagulant targets", "new targets", "coagulation mechanisms", "potential anticoagulant", "herb medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "blood coagulation factor", keywords are linked with AND/OR. Recent findings on coagulation mechanisms, potential anticoagulant targets and traditional Chinese medicine were studied. RESULTS The active components extracted from the Chinese medicinal herbs, Salvia miltiorrhiza, Chuanxiong rhizoma, safflower and Panax notoginseng have obvious anticoagulant effects and can be used as potential anticoagulant drugs, but the risk of bleeding is unclear. TF/FVIIa, FVIII, FIX, FXI, FXII, and FXIII have all been evaluated as targets in animal studies or clinical trials. FIX and FXI are the most studied anticoagulant targets, but FXI inhibitors have shown stronger advantages. CONCLUSION This review of potential anticoagulants provides a comprehensive resource. Literature analysis suggests that FXI inhibitors can be used as potential anticoagulant candidates. In addition, we should not ignore the anticoagulant effect of traditional Chinese medicine, and look forward to more research and the emergence of new drugs.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Suqing Liao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-Harvest Technology and Nondestructive Testing of Fruits & Vegetables, Nanchang 330045, PR. China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China.
| |
Collapse
|
8
|
Kostenko V, Akimov O, Gutnik O, Kostenko H, Kostenko V, Romantseva T, Morhun Y, Nazarenko S, Taran O. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon 2023; 9:e15551. [PMID: 37180884 PMCID: PMC10171461 DOI: 10.1016/j.heliyon.2023.e15551] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
One of the adverse outcomes of acute inflammatory response is progressing to the chronic stage or transforming into an aggressive process, which can develop rapidly and result in the multiple organ dysfunction syndrome. The leading role in this process is played by the Systemic Inflammatory Response that is accompanied by the production of pro- and anti-inflammatory cytokines, acute phase proteins, and reactive oxygen and nitrogen species. The purpose of this review that highlights both the recent reports and the results of the authors' own research is to encourage scientists to develop new approaches to the differentiated therapy of various SIR manifestations (low- and high-grade systemic inflammatory response phenotypes) by modulating redox-sensitive transcription factors with polyphenols and to evaluate the saturation of the pharmaceutical market with appropriate dosage forms tailored for targeted delivery of these compounds. Redox-sensitive transcription factors such as NFκB, STAT3, AP1 and Nrf2 have a leading role in mechanisms of the formation of low- and high-grade systemic inflammatory phenotypes as variants of SIR. These phenotypic variants underlie the pathogenesis of the most dangerous diseases of internal organs, endocrine and nervous systems, surgical pathologies, and post-traumatic disorders. The use of individual chemical compounds of the class of polyphenols, or their combinations can be an effective technology in the therapy of SIR. Administering natural polyphenols in oral dosage forms is very beneficial in the therapy and management of the number of diseases accompanied with low-grade systemic inflammatory phenotype. The therapy of diseases associated with high-grade systemic inflammatory phenotype requires medicinal phenol preparations manufactured for parenteral administration.
Collapse
Affiliation(s)
- Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Ukraine
- Corresponding author.
| | - Oleksandr Gutnik
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Ukraine
| | - Tamara Romantseva
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Yevhen Morhun
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Svitlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Olena Taran
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| |
Collapse
|
9
|
Chen J, Yang Y, Li Y, Xu L, Zhao C, Chen Q, Lu Y. Targeted microbubbles combined with low-power focused ultrasound promote the thrombolysis of acute deep vein thrombosis. Front Bioeng Biotechnol 2023; 11:1163405. [PMID: 37008026 PMCID: PMC10060865 DOI: 10.3389/fbioe.2023.1163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: The side effects of conventional therapy for acute deep vein thrombosis (DVT) are severe, with inflammatory reactions playing a pivotal role. It is particularly important to explore new ways of treatment thrombosis by targeting inflammatory factors.Methods: A targeted microbubble contrast agent was prepared using the biotin-avidin method. The 40 DVT model rabbits were established and divided into four groups according to different treatment regimens. The four coagulation indexes, TNF-α, and D-dimer content of experimental animals were measured before modeling and before and after treatment, and the thrombolysis was assessed by ultrasound imaging. Finally, the results were verified by pathology.Results and Discussion: Fluorescence microscopy verified the successful preparation of targeted microbubbles. Among the groups, PT, APTT, and TT in Group II-IV were longer than those in Group I (all p < 0.05). FIB and D-dimer content were lower than those in Group I (all p < 0.05), and TNF-α content in Group IV was lower than that in Group I-III (all p < 0.05). Pairwise comparison before modeling and before treatment and after treatment showed that, after treatment, the PT, APTT, and TT in Group II-IV were longer than those before modeling (all p < 0.05). The contents of FIB and D-dimer were lower than those before modeling and before treatment (all p < 0.05). The content of TNF-α decreased significantly only in Group IV, but increased in the other three groups. Targeted microbubbles combined with Low-power focused ultrasound can reduce inflammation, significantly promote thrombolysis, and provide new ideas and methods for the diagnosis and treatment of acute DVT.
Collapse
Affiliation(s)
- Jianfu Chen
- Kunming Medical University, Kunming, Yunnan, China
| | - Yuan Yang
- Kunming Medical University, Kunming, Yunnan, China
| | - Yunyan Li
- Department of Ultrasound, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lirong Xu
- Department of Ultrasound, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Chun Zhao
- Department of Ultrasound, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qi Chen
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yongping Lu
- Department of Ultrasound, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
- *Correspondence: Yongping Lu,
| |
Collapse
|
10
|
Gao X, Gao J. Investigation of the efficacy and pharmacological mechanism of Danhong injections for treating chronic obstructive pulmonary disease: A PRISMA-compliant meta-analysis and network pharmacology analysis. Medicine (Baltimore) 2023; 102:e32846. [PMID: 36749263 PMCID: PMC9901954 DOI: 10.1097/md.0000000000032846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulating evidence supported the clinical efficacy of Danhong injection (DHI) on chronic obstructive pulmonary disease (COPD). It is urgent to summarize the effects of DHI on various outcomes in COPD patients and to elucidate the molecular mechanisms of DHI in treating COPD. METHODS Eligible studies were retrieved from 6 databases including China national knowledge infrastructure, Wangfang, VIP, web of science, PubMed, and Embase. The heterogeneity across studies was tested using the I2 statistic and the quality of studies was assessed. The pooled evaluation of outcomes was calculated using a fix- or random-effect model according to the heterogeneity. The underlying mechanism of DHI in treating COPD was analyzed using network pharmacology. RESULTS A total of 34 eligible studies with a general medium quality were included in the meta-analysis. The pooled data showed that DHI intervention significantly increased clinical efficacy as compared to routine treatment. Meanwhile, our data also revealed that the addition of DHI markedly improved hemorheological indicators, lung function index, arterial blood gas index, and as well as blood coagulation functions. However, the current meta-analysis lacked sufficient data to support the significant effect of DHI on prothrombin time and activated partial thromboplastin time. Network pharmacology found 59 candidate targets of DHI in treating COPD, and enrichment analysis found these targets were associated with lymphocyte proliferation and activation, glucocorticoid receptor signaling, TREM1 signaling, IL-12 signaling and production in macrophages, and aryl hydrocarbon receptor signaling. Multiple core targets including AKT1, TNF, and IL1B, etc. Were identified and might play an important role in the action of DHI against COPD. CONCLUSION Taken together, this study suggested that DHI could ameliorate hemorheological indicators, lung function, arterial blood gas, and as well as coagulation functions of COPD patients and elucidate the underlying mechanism of DHI against COPD.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department of Pharmacy, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinsong Gao
- Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- * Correspondence: Jinsong Gao, Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310016, China (e-mail: )
| |
Collapse
|
11
|
Liu C, Du L, Zhang S, Wang H, Kong L, Du G. Network pharmacology and experimental study of phenolic acids in salvia miltiorrhiza bung in preventing ischemic stroke. Front Pharmacol 2023; 14:1108518. [PMID: 36778026 PMCID: PMC9914184 DOI: 10.3389/fphar.2023.1108518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
At present, the preventive effect of ischemic stroke is not ideal, and the preventive drugs are limited. Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of cardiovascular diseases for many years. Phenolic Acids extracted from danshen, which showed multiple biological activities, have been developed as an injection for the treatment of ischemic stroke. However, its preventive effect on ischemic stroke has not been fully reported. The current study aimed to identify the potential active phenolic acids for the prevention of ischemic stroke and explore its mechanism using network pharmacology and experimental analyses. The targets of phenolic acids and ischemic stroke were obtained from public databases. Network pharmacology predicted that 35 kinds of phenolic acids had 201 core targets with ischemic stroke. The core prevention targets of ischemic stroke include IL-6, AKT1, VEGFA, etc. The signaling pathways involved in core targets include AGE-RAGE signaling pathway, HIF-1 signaling pathway, and cAMP signaling pathways, etc. Then, the antiplatelet effect of phenolic acids was screened by in vitro antiplatelet experiment. Our results showed that phenolic acids have a good inhibitory effect on ADP-induced platelet aggregation and salvianolic acid A had a good antiplatelet effect. We further demonstrated that SAA preventive administration reduced neurobehavioral scores, decreased infarct size, and protected tight junction proteins in autologous thrombus stroke model. These studies not only shed light on the potential mechanisms of phenolic acids active components on ischemic stroke, but also provided theoretical and experimental information for the development of new medicines from Danshen for the prevention of ischemic stroke. In addition, our results suggest that SAA has the potential to be a candidate for ischemic stroke prevention drug.
Collapse
Affiliation(s)
- Chengdi Liu
- Department of Pharmacy, Affiliated Beijing Friendship Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haigang Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Linglei Kong, ; Guanhua Du,
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Linglei Kong, ; Guanhua Du,
| |
Collapse
|
12
|
Won Jun H, Kyung Lee H, Ho Na I, Jeong Lee S, Kim K, Park G, Sook Kim H, Ju Son D, Kim Y, Tae Hong J, Han SB. The role of CCL2, CCL7, ICAM-1, and VCAM-1 in interaction of endothelial cells and natural killer cells. Int Immunopharmacol 2022; 113:109332. [DOI: 10.1016/j.intimp.2022.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
13
|
Nguyen TLL, Jin Y, Kim L, Heo KS. Inhibitory effects of 6'-sialyllactose on angiotensin II-induced proliferation, migration, and osteogenic switching in vascular smooth muscle cells. Arch Pharm Res 2022; 45:658-670. [PMID: 36070173 DOI: 10.1007/s12272-022-01404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Excessive production and migration of vascular smooth muscle cells (VSMCs) are associated with vascular remodeling that causes vascular diseases, such as restenosis and hypertension. Angiotensin II (Ang II) stimulation is a key factor in inducing abnormal VSMC function. This study aimed to investigate the effects of 6'-sialyllactose (6'SL), a human milk oligosaccharide, on Ang II-stimulated cell proliferation, migration and osteogenic switching in rat aortic smooth muscle cells (RASMCs) and human aortic smooth muscle cells (HASMCs). Compared with the control group, Ang II increased cell proliferation by activating MAPKs, including ERK1/2/p90RSK/Akt/mTOR and JNK pathways. However, 6'SL reversed Ang II-stimulated cell proliferation and the ERK1/2/p90RSK/Akt/mTOR pathways in RASMCs and HASMCs. Moreover, 6'SL suppressed Ang II-stimulated cell cycle progression from G0/G1 to S and G2/M phases in RASMCs. Furthermore, 6'SL effectively inhibited cell migration by downregulating NF-κB-mediated MMP2/9 and VCAM-1 expression levels. Interestingly, in RASMCs, 6'SL attenuated Ang II-induced osteogenic switching by reducing the production of p90RSK-mediated c-fos and JNK-mediated c-jun, leading to the downregulation of AP-1-mediated osteopontin production. Taken together, our data suggest that 6'SL inhibits Ang II-induced VSMC proliferation and migration by abolishing the ERK1/2/p90RSK-mediated Akt and NF-κB signaling pathways, respectively, and osteogenic switching by suppressing p90RSK- and JNK-mediated AP-1 activity.
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Lila Kim
- GeneChem Inc., Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
14
|
Park SJ, Joo SH, Lee N, Jang WJ, Seo JH, Jeong CH. ACY-241, an HDAC6 inhibitor, overcomes erlotinib resistance in human pancreatic cancer cells by inducing autophagy. Arch Pharm Res 2021; 44:1062-1075. [PMID: 34761352 DOI: 10.1007/s12272-021-01359-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a promising target for cancer treatment because it regulates cell mobility, protein trafficking, cell growth, apoptosis, and metastasis. However, the mechanism of HDAC6-induced anticancer drug resistance is unclear. In this study, we evaluated the anticancer effect of ACY-241, an HDAC6-selective inhibitor, on erlotinib-resistant pancreatic cancer cells that overexpress HDAC6. Our data revealed that ACY-241 hyperacetylated the HDAC6 substrate, α-tubulin, leading to a significant reduction in cell viability of erlotinib-resistant pancreatic cells, BxPC3-ER and HPAC-ER. Notably, a synergistic anticancer effect was observed in cells that received combined treatment with ACY-241 and erlotinib. Combined treatment effectively induced autophagy and inhibited autophagy through siLC3B, and siATG5 alleviated ACY-241-mediated cell death, as reflected by the recovery of PARP cleavage and apoptosis rates. In addition, combined ACY-241 and erlotinib treatment induced autophagy and subsequently, cell death by reducing AKT-mTOR activity and increasing phospho-AMPK signaling. Therefore, HDAC6 may be involved in the suppression of autophagy and acquisition of resistance to erlotinib in ER pancreatic cancer cells. ACY-241 to overcome erlotinib resistance could be an effective therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Seong-Jun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Sang Hoon Joo
- Department of Pharmacy, Daegu Catholic University, Gyeongsan, 38430, South Korea
| | - Naeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, 1095 Dalgubeil-daero, Daegu, 42601, South Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeil-daero, Daegu, 42601, South Korea.
| |
Collapse
|