1
|
Song JY, Lee YJ, Lee SH, Lee JY. Enoximone alleviates atopic dermatitis-like skin inflammation via inhibition of type 2 T helper cell development. Int Immunopharmacol 2024; 142:113189. [PMID: 39293315 DOI: 10.1016/j.intimp.2024.113189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease that affects approximately 15-20 % of the children and 1-3 % of the adults worldwide. Corticosteroids and calcineurin inhibitors are used in AD therapy; however, they cause various side effects. Current studies focus on novel therapeutic targets such as phosphodiesterases (PDEs) to mitigate AD. However, the relationship between PDE3 inhibitors and AD has not yet been reported. This study aimed to investigate the therapeutic effects and pharmaceutical mechanisms of enoximone (Enox), a PDE3 inhibitor. Mice were stimulated with 2,4-dinitrochlorobenzene (DNCB) to induce AD-like skin inflammation and were topically treated with Enox for 2 weeks. Treatment with Enox reduced the dermatitis score, skin water loss, IgE production, and expression of cytokines and chemokines that were elevated by DNCB. Histologically, Enox treatment reduced the skin thickness and the infiltration of various inflammatory cells, including macrophages, mast cells, eosinophils, and type 2 T helper (Th2) cells. HuT78, a human T cell line, was used to investigate the differentiation of T cells into Th2 cells. Enox treatment decreased the expression of Th2 cytokines and GATA3, a Th2 cell marker in HuT78, and suppressed signaling pathways that play a crucial role in Th2 cell differentiation. Collectively, the results demonstrate that Enox alleviates AD-like skin inflammation by inhibiting T-cell development. Thus, Enox may be a therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeon Jin Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Su Hyun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. TXNIP regulates pulmonary inflammation induced by Asian sand dust. Redox Biol 2024; 78:103421. [PMID: 39520910 DOI: 10.1016/j.redox.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Asian sand dust (ASD), a seasonal dust storm originating from the deserts of China and Mongolia, affects Korea and Japan during the spring, carrying soil particles and a variety of biochemical components. Exposure to ASD has been associated with the onset and exacerbation of respiratory disorders, although the underlying mechanisms remain unclear. This study investigates ASD-induced pulmonary toxicity and its mechanistic pathways, focusing on the role of thioredoxin-interacting protein (TXNIP). Using TXNIP knock-out (KO) mice and adeno-associated virus (AAV)-mediated TXNIP overexpression transgenic mice, we explored how TXNIP modulates ASD-induced pulmonary inflammation. Mice were exposed to ASD via intranasal administration on days 1, 3, and 5 to induce inflammation. ASD exposure led to significant pulmonary inflammation, evidenced by increased inflammatory cell counts and elevated cytokine levels in bronchoalveolar lavage fluid, as well as heightened protein expression of the TXNIP/NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. TXNIP KO mice exhibited attenuated airway inflammation and downregulation of the NLRP3 inflammasome compared to wild-type controls, while AAV-mediated TXNIP overexpression mice showed exacerbated inflammatory responses, including elevated NLRP3 inflammasome expression, compared to AAV-GFP controls. These findings suggest that TXNIP is a key regulator of ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk, 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk, 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Gao L, Zhang X, Weng Y, Du Y, Sun YL, Wei H, Hao T, Chen Y, Liang X, Zhang M. Theophylline derivatives promote primordial follicle activation via cAMP-PI3K/Akt pathway and ameliorate fertility deficits in naturally aged mice. Int J Biol Sci 2024; 20:5312-5329. [PMID: 39430241 PMCID: PMC11489179 DOI: 10.7150/ijbs.99936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
In elderly women and patients with premature ovarian insufficiency (POI), activating their remaining dormant primordial follicles in vivo is challenging. In this study, we found that phosphodiesterase (PDE) subtypes were expressed mainly in primordial follicle oocytes. The specific PDE inhibitors and theophylline derivatives (aminophylline, dyphylline, and enprofylline) activated primordial follicles in neonatal mice by ovary culture and intraperitoneal injection. These inhibitors also increased the levels of ovarian cyclic adenosine monophosphate (cAMP) and oocyte phosphorylated protein kinase B (p-Akt). The blockade of gap junctions using carbenoxolone (CBX) increased the levels of ovarian cAMP and pre-granulosa cell phosphorylated mammalian target of rapamycin (p-mTOR), suggesting that oocyte PDEs hydrolyze cAMP from pre-granulosa cells through gap junctions to maintain primordial follicle dormancy. Importantly, oral aminophylline improved ovulated oocyte quantity and quality, and increased offspring numbers in naturally aged mice. In addition, theophylline derivatives also activated human primordial follicles and increased p-Akt levels. Thus, theophylline derivatives activate primordial follicles by accumulating cAMP levels and activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway in oocytes, and oral aminophylline increased fertility in naturally aged female mice by improving ovulated oocyte quantity and quality. As oral medications, theophylline derivatives may be used to improve fertility in elderly women and patients with POI.
Collapse
Affiliation(s)
- Wenbo Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Du
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan-Li Sun
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Tiantian Hao
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuezhou Chen
- Reproductive Medicine Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
4
|
Lee SJ, Pak SW, Kim WI, Park SH, Cho YK, Ko JW, Kim TW, Kim JS, Kim JC, Lim JO, Shin IS. Silibinin Suppresses Inflammatory Responses Induced by Exposure to Asian Sand Dust. Antioxidants (Basel) 2024; 13:1187. [PMID: 39456441 PMCID: PMC11505622 DOI: 10.3390/antiox13101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Asian sand dust (ASD), generated from the deserts of China and Mongolia, affects Korea and Japan during spring and autumn, causing harmful effects on various bio-organs, including the respiratory system, due to its irritants such as fine dust, chemicals, and toxic materials. Here, we investigated the therapeutic effects of silibinin against ASD-induced airway inflammation using mouse macrophage-like cell line RAW264.7 and a murine model. ASD was intranasally administered to mice three times a week and silibinin was administered for 6 days by oral gavage. In ASD-stimulated RAW264.7 cells, silibinin treatment decreased tumor necrosis factor-α production and reduced the expression of p-p65NF-κB, p-p38, and cyclooxygenase (COX)-2, while increasing heme oxygenase (HO)-1 expression. In ASD-exposed mice, silibinin administration reduced inflammatory cell count and cytokines in bronchoalveolar lavage fluid and decreased inflammatory cell infiltration in lung tissue. Additionally, silibinin lowered oxidative stress, as evidenced by decreased 8-hydroxy-2'-deoxyguanosin (8-OHdG) expression and increased HO-1 expression. The expression of inflammatory-related proteins, including p-p65NF-κB, COX-2, and p-p38, was markedly reduced by silibinin administration. Overall, silibinin treatment reduced the expression of p-p65NF-κB, COX-2, and p-p38 in response to ASD exposure, while increasing HO-1 expression both in vitro and in vivo. These findings suggest that silibinin mitigates pulmonary inflammation caused by ASD exposure by reducing inflammatory signaling and oxidative stress, indicating its potential as a therapeutic agent for ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Se-Jin Lee
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - So-Won Pak
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Woong-Il Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Sin-Hyang Park
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 28503, Republic of Korea;
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Joong-Sun Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Jong-Choon Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - In-Sik Shin
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| |
Collapse
|
5
|
Lee SJ, Pak SW, Lee AY, Kim WI, Chae SW, Cho YK, Ko JW, Kim TW, Kim JC, Moon BC, Seo YS, Shin IS. Loranthus tanakae Franch. and Sav. Attenuates Respiratory Inflammation Caused by Asian Sand Dust. Antioxidants (Basel) 2024; 13:419. [PMID: 38671867 PMCID: PMC11047528 DOI: 10.3390/antiox13040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Asian sand dust (ASD), generally produced in East Asia, including China, Japan, and Korea, directly leads to the development of pulmonary disease and exacerbates underlying pulmonary diseases. Loranthus tanakae Franch. and Sav. is a traditional herbal medicine applied to improve various inflammatory conditions. Here, we evaluated the curative properties of L. tanakae ethanol extract (LTE) against pulmonary inflammation caused by ASD. Additionally, to investigate the mechanism of action of LTE, we performed network pharmacological analysis. ASD was administrated on day 1, 3, and 5 by intranasal instillation, and LTE was orally administered for 6 days. Administration of LTE significantly decreased inflammatory cytokines and the number of inflammatory cells in bronchoalveolar lavage fluid, which was accompanied by a decrease in inflammatory cell accumulation in pulmonary tissue. Administration of LTE decreased the expression of cyclooxygenase2 and matrix metalloproteinase-9 in mice exposed to ASD with the decline in p65 phosphorylation. Additionally, administration of LTE significantly elevated hemeoxygenase (HO)-1 expression in the pulmonary tissue of mice exposed to ASD. These results were consistent with the data of network pharmacological analysis. This experiment showed that LTE attenuated pulmonary inflammation caused by ASD via inhibition of NF-κB and elevation of HO-1. Therefore, LTE may have potential as a therapeutic agent to treat pulmonary inflammation caused by ASD.
Collapse
Affiliation(s)
- Se-Jin Lee
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - So-Won Pak
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Woong-Il Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - Sung-Wook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Chungcheongnam-do, Republic of Korea;
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 53212, Jeollabuk-do, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 28503, Chungbuk, Republic of Korea;
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Chungcheongnam-do, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Chungcheongnam-do, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Jong-Choon Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 53212, Jeollabuk-do, Republic of Korea
| | - In-Sik Shin
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| |
Collapse
|
6
|
Stolfa I, Page C. Phosphodiesterase inhibitors and lung diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:55-81. [PMID: 37524492 DOI: 10.1016/bs.apha.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phosphodiesterase enzymes (PDE) have long been known as regulators of cAMP and cGMP, second messengers involved in various signaling pathways and expressed in a variety of cell types implicated in respiratory diseases such as airway smooth muscle and inflammatory cells making them a key target for the treatment of lung diseases as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, and pulmonary hypertension (PH). The first reported PDE inhibitor was the xanthine, theophylline, described as a non-specific PDE inhibitor and whilst this drug is effective, it also has a range of unwanted side effects. In an attempt to improve the therapeutic window of xanthines, a number of selective PDE inhibitors have been developed for the treatment of respiratory diseases with only the selective PDE 4 inhibitor, roflumilast, being approved for the treatment of severe COPD. However, roflumilast also has a very narrow therapeutic window due to a number of important doses limiting side effects, particularly in the gastrointestinal tract. However, there continues to be research carried out in this field to identify improved selective PDE inhibitors, both by targeting other PDE subtypes (e.g., PDE 7 found in a number of inflammatory and immune cells) and through development of selective PDE inhibitors for pulmonary administration to reduce systemic exposure and improve the side effect profile. This approach has been exemplified by the development of ensifentrine, a dual PDE 3-PDE 4 inhibitor, an inhaled drug that has recently completed two successful Phase III clinical trials in patients with COPD.
Collapse
Affiliation(s)
- Ivana Stolfa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom.
| |
Collapse
|
7
|
Wójcik-Pszczoła K, Pociecha K, Chłoń-Rzepa G, Zadrożna M, Nowak B, Plutecka H, Koczurkiewicz-Adamczyk P, Przejczowska-Pomierny K, Pękala E, Gosens R, Wyska E. Inhaled pan-phosphodiesterase inhibitors ameliorate ovalbumin-induced airway inflammation and remodeling in murine model of allergic asthma. Int Immunopharmacol 2023; 119:110264. [PMID: 37159965 DOI: 10.1016/j.intimp.2023.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-β/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Zadrożna
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Nowak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Hanna Plutecka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Przejczowska-Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Reinoud Gosens
- University of Groningen, Department of Molecular Pharmacology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Jin Y, Tangchang W, Kwon OS, Lee JY, Heo KS, Son HY. Ginsenoside Rh1 ameliorates the asthma and allergic inflammation via inhibiting Akt, MAPK, and NF-κB signaling pathways in vitro and in vivo. Life Sci 2023; 321:121607. [PMID: 36958436 DOI: 10.1016/j.lfs.2023.121607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
AIMS Overproduction of pro-inflammatory cytokines and its-mediated immune cell infiltration play a crucial role in asthma progression. In this study, we investigated the role of ginsenoside Rh1 (Rh1) in ovalbumin (OVA)/lipopolysaccharide (LPS)-induced allergic asthma both in vitro and in vivo. MATERIALS AND MAIN METHODS The phorbol ester (PMA) and LPS were used to induce inflammation in lung airway cells and macrophage activation, respectively. Western blotting, quantitative reverse transcription-PCR, and immunofluorescence (IF) assays were performed to elucidate the underlying molecular mechanisms. To evaluating the effects of Rh1 in vivo, OVA and LPS were used to establish allergic asthma models. KEY FINDINGS Rh1 significantly suppressed PMA-induced lung inflammation and macrophage activation by suppressing pro-inflammatory cytokines (TNF-α, IL-1β, MCP-1), ICMA-1, and matrix metallopeptidase 9 (MMP9) in A549 cells. Rh1 abolished the PMA-induced inflammation by suppressing MAPK, Akt, and NF-κB p65. Pretreatment with Rh1 blocked PMA-mediated translocation of NF-κB, a key marker of pro-inflammatory cytokine release, into the nucleus. Similar to PMA-induced lung inflammation, Rh1 suppressed LPS-induced macrophage activation by suppressing NF-κB p65 activation and inducible nitric oxide synthase protein and mRNA expression. Consistent with in vitro data, LPS injection enhanced the number of immune cells induced by OVA in bronchoalveolar lavage fluid, whereas 20 mg/kg Rh1 significantly decreased OVA/LPS-mediated immune cell induction. In addition, Rh1 inhibited eosinophil, macrophage, and neutrophil maturation through by IL-4 and OVA-specific IgE production. SIGNIFICANCE Rh1 protects against OVA/LPS-induced allergic asthma by suppressing immune cell infiltration by blocking the activation of MAPK, Akt, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Warisraporn Tangchang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Oh Seong Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
9
|
Huang JX, Zhu BL, Xu JP, Zhou ZZ. Advances in the development of phosphodiesterase 7 inhibitors. Eur J Med Chem 2023; 250:115194. [PMID: 36796299 DOI: 10.1016/j.ejmech.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 7 (PDE7) specifically hydrolyzes cyclic adenosine monophosphate (cAMP), a second messenger that plays essential roles in cell signaling and physiological processes. Many PDE7 inhibitors used to investigate the role of PDE7 have displayed efficacy in the treatment of a wide range of diseases, such as asthma and central nervous system (CNS) disorders. Although PDE7 inhibitors are developed more slowly than PDE4 inhibitors, there is increasing recognition of PDE7 inhibitors as potential therapeutics for no nausea and vomiting secondary. Herein, we summarized the advances in PDE7 inhibitors over the past decade, focusing on their crystal structures, key pharmacophores, subfamily selectivity, and therapeutic potential. Hopefully, this summary will lead to a better understanding of PDE7 inhibitors and provide strategies for developing novel therapies targeting PDE7.
Collapse
Affiliation(s)
- Jia-Xi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Lin Zhu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, Schiöth HB. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharmacol 2022; 13:1057083. [PMID: 36506513 PMCID: PMC9731127 DOI: 10.3389/fphar.2022.1057083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.
Collapse
Affiliation(s)
- Andrey D. Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden,*Correspondence: Helgi B. Schiöth,
| |
Collapse
|
11
|
Tabaa MME, Fattah AMK, Shaalan M, Rashad E, El Mahdy NA. Dapagliflozin mitigates ovalbumin-prompted airway inflammatory-oxidative successions and associated bronchospasm in a rat model of allergic asthma. Expert Opin Ther Targets 2022; 26:487-506. [PMID: 35549595 DOI: 10.1080/14728222.2022.2077723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory lung disease that universally affects millions of people. Despite numerous well-defined medications, asthma is poorly managed. The study aimed to clarify the potential therapeutic effect of Dapagliflozin (DAPA) against lung inflammation, oxidative stress and associated bronchospasm in OVA-sensitized rat asthma model. RESEARCH DESIGN AND METHODS Twenty-five rats were allocated into (Control, Asthma, DEXA, DAPA, and DAPA+DEXA). All treatments were administered orally once a day for two weeks. BALF levels of IL-17, TNFα, IL-1β, and MCP-1 were determined to assess airway inflammation. For oxidative stress determination, BALF MDA levels and TAC were measured. The BALF S100A4 level and NO/sGC/cGMP pathway were detected. Lung histopathological findings and immunohistochemical investigation of eNOS and iNOS activities were recorded. RESULTS DAPA significantly reduced (p < 0.001) airway inflammatory-oxidative markers (IL-17, TNFα, IL-1β, MCP1, and MDA), but increased (p < 0.001) TAC, and mitigated bronchospasm by activating NO/sGC/cGMP and reducing S100A4 (p < 0.001). The biochemical and western blot studies were supported by histopathological and immunohistochemical investigations. CONCLUSIONS : DAPA is presenting a new prospective possibility for future asthma therapy due to its anti-inflammatory, anti-oxidant, and bronchodilator properties. DAPA has the property of reducing Dexamethasone (DEXA)-associated unfavorable effects during asthma treatment.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City,Egypt
| | - Aliaa Mohammed Kamel Fattah
- Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat city, Minofia Governorate, Egypt
| | - Mohamed Shaalan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Nageh Ahmed El Mahdy
- Pharmacology and Toxicology Department, Faculty of Pharmacy,Tanta University, Egypt
| |
Collapse
|