1
|
Karanam SK, Nagvishnu K, Uppala PK, Edhi S, Varri SR. Crimean-Congo hemorrhagic fever: Pathogenesis, transmission and public health challenges. World J Virol 2025; 14:100003. [DOI: 10.5501/wjv.v14.i1.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The dangerous Crimean-Congo hemorrhagic fever virus (CCHFV), an encapsulated negative-sense RNA virus of the family Nairoviridae, is transmitted from person to person via ticks. With a case fatality rate between 10% to 40%, the most common ways that the disease may spread to humans are via tick bites or coming into touch with infected animals' blood or tissues. Furthermore, the transfer of bodily fluids between individuals is another potential route of infection. There is a wide range of symptoms experienced by patients throughout each stage, from myalgia and fever to extreme bruising and excess bleeding. Tick management measures include minimising the spread of ticks from one species to another and from people to animals via the use of protective clothing, repellents, and proper animal handling. In order to prevent the spread of illness, healthcare workers must adhere to stringent protocols. Despite the lack of an authorised vaccine, the main components of treatment now consist of preventative measures and supportive care, which may include the antiviral medicine ribavirin. We still don't know very much about the virus's mechanisms, even though advances in molecular virology and animal models have improved our understanding of the pathogenesis of CCHFV. A critical need for vaccination that is both safe and effective, as well as for quick diagnosis and efficient treatments to lessen the disease's impact in areas where it is most prevalent. Important steps towards lowering Crimean-Congo hemorrhagic fever mortality and morbidity rates were to anticipatethe future availability of immunoglobulin products.
Collapse
Affiliation(s)
- Sita Kumari Karanam
- Department of Pharmaceutical Biotechnology, Maharajah’s College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Kandra Nagvishnu
- Department of Pharmacology, Santhiram Medical College and General Hospital, Nandyal 518501, Andhra Pradesh, India
| | - Praveen Kumar Uppala
- Department of Pharmacology, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Sandhya Edhi
- Department of Pharmacy, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Srinivasa Rao Varri
- Department of Pharmaceutical Analysis, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| |
Collapse
|
2
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
3
|
Li X, Jin K, Cheng TC, Liao YC, Lee WJ, Bhullar AS, Chen LC, Rychahou P, Phelps MA, Ho YS, Guo P. RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity. Biomaterials 2024; 305:122432. [PMID: 38176263 PMCID: PMC10994150 DOI: 10.1016/j.biomaterials.2023.122432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
The field of RNA therapeutics has been emerging as the third milestone in pharmaceutical drug development. RNA nanoparticles have displayed motile and deformable properties to allow for high tumor accumulation with undetectable healthy organ accumulation. Therefore, RNA nanoparticles have the potential to serve as potent drug delivery vehicles with strong anti-cancer responses. Herein, we report the physicochemical basis for the rational design of a branched RNA four-way junction (4WJ) nanoparticle that results in advantageous high-thermostability and -drug payload for cancer therapy, including metastatic tumors in the lung. The 4WJ nanostructure displayed versatility through functionalization with an anti-cancer chemical drug, SN38, for the treatment of two different cancer models including colorectal cancer xenograft and orthotopic lung metastases of colon cancer. The resulting 4WJ RNA drug complex spontaneously targeted cancers effectively for cancer inhibition with and without ligands. The 4WJ displayed fast renal excretion, rapid body clearance, and little organ accumulation with undetectable toxicity and immunogenicity. The safety parameters were documented by organ histology, blood biochemistry, and pathological analysis. The highly efficient cancer inhibition, undetectable drug toxicity, and favorable Chemical, Manufacturing, and Control (CMC) production of RNA nanoparticles document a candidate with high potential for translation in cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Abhjeet S Bhullar
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung, 406040, Taiwan
| | - Piotr Rychahou
- Markey Cancer Center, Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Jin K, Liao YC, Cheng TC, Li X, Lee WJ, Pi F, Jasinski D, Chen LC, Phelps MA, Ho YS, Guo P. In Vitro and In Vivo Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles. Mol Pharm 2024; 21:718-728. [PMID: 38214504 PMCID: PMC10976369 DOI: 10.1021/acs.molpharmaceut.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
RNA therapeutics has advanced into the third milestone in pharmaceutical drug development, following chemical and protein therapeutics. RNA itself can serve as therapeutics, carriers, regulators, or substrates in drug development. Due to RNA's motile, dynamic, and deformable properties, RNA nanoparticles have demonstrated spontaneous targeting and accumulation in cancer vasculature and fast excretion through the kidney glomerulus to urine to prevent possible interactions with healthy organs. Furthermore, the negatively charged phosphate backbone of RNA results in general repulsion from negatively charged lipid cell membranes for further avoidance of vital organs. Thus, RNA nanoparticles can spontaneously enrich tumor vasculature and efficiently enter tumor cells via specific targeting, while those not entering the tumor tissue will clear from the body quickly. These favorable parameters have led to the expectation that RNA has low or little toxicity. RNA nanoparticles have been well characterized for their anticancer efficacy; however, little detail on RNA nanoparticle pathology and safety is known. Here, we report the in vitro and in vivo assessment of the pathology and safety aspects of different RNA nanoparticles including RNA three-way junction (3WJ) harboring 2'-F modified pyrimidine, folic acid, and Survivin siRNA, as well as the RNA four-way junction (4WJ) harboring 2'-F modified pyrimidine and 24 copies of SN38. Both animal models and patient serum were investigated. In vitro studies include hemolysis, platelet aggregation, complement activation, plasma coagulation, and interferon induction. In vivo studies include hematoxylin and eosin (H&E) staining, hematological and biochemical analysis as the serum profiling, and animal organ weight study. No significant toxicity, side effect, or immune responses were detected during the extensive safety evaluations of RNA nanoparticles. These results further complement previous cancer inhibition studies and demonstrate RNA nanoparticles as an effective and safe drug delivery vehicle for future clinical translations.
Collapse
Affiliation(s)
- Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengmei Pi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Jasinski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Dai X, Li Z, Shao X. Photocontrolled Release of Carbendazim from Photocaged Molecule. Photochem Photobiol 2023; 99:1310-1317. [PMID: 36627227 DOI: 10.1111/php.13779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Carbendazim (MBC) is a high-efficient and broad-spectrum fungicide, but excessive residues caused by its improper use have caused health toxicity and environmental pollution. It is an irresistible trend to find green, safe, accurate and controllable release technology of MBC. To achieve the purpose of safe and efficient use of MBC, photolabile protecting group was used to realize the controllable release. This study aimed to covalently link MBC and 6-nitropiperonyl alcohol (NP) to synthesize photocaged molecule NP-MBC. The photodegradation test showed that NP-MBC could effectively release MBC under ultraviolet light. The antifungal activity of NP-MBC showed significant difference against Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium graminearum before and after irradiation, and the effects on mycelial morphology are different. The hyphae morphology of R. solani and F. graminearum changed significantly, and mycelia were severely damaged. The hyphae surface of former was swollen and broken, and the latter was collapsed and shriveled after NP-MBC light treatment. NP-MBC could realize the light-controlled release of MBC, and the antifungal activity before and after irradiation was significantly different, which provides an effective way to release MBC.
Collapse
Affiliation(s)
- Xiaoyi Dai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
7
|
Liu LS, Leung HM, Morville C, Chu HC, Tee JY, Specht A, Bolze F, Lo PK. Wavelength-Dependent, Orthogonal Photoregulation of DNA Liberation for Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1944-1957. [PMID: 36573551 DOI: 10.1021/acsami.2c20757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we synthesized two phosphoramidites based on 2,7-bis-{4-nitro-8-[3-(2-propyl)-styryl]}-9,9-bis-[1-(3,6-dioxaheptyl)]-fluorene (BNSF) and 4,4'-bis-{8-[4-nitro-3-(2-propyl)-styryl]}-3,3'-di-methoxybiphenyl (BNSMB) structures as visible light-cleavable linkers for oligonucleotide conjugation. In addition to the commercial ultraviolet (UV) photocleavable (PC) linker, the BNSMB linker was further applied as a building component to construct photoregulated DNA devices as duplex structures, which are functionalized with fluorophores and quenchers. Selective cleavage of PC and BNSMB is achieved in response to ultraviolet (UV) and visible light irradiations as two inputs, respectively. This leads to controllable dissociation of pieces of DNA fragments, which is followed by changes of fluorescence emission as signal outputs of the system. By tuning the number and position of the photocleavable molecules, fluorophores, and quenchers, various DNA devices were developed, which mimic the functions of Boolean logic gates and achieve logic operations in AND, OR, NOR, and NAND gates in response to two different wavelengths of light inputs. By sequence design, the photolysis products can be precisely programmed in DNA devices and triggered to release in a selective and/or sequential manner. Thus, this photoregulated DNA device shows potential as a wavelength-dependent drug delivery system for selective control over the release of multiple individual therapeutic oligonucleotide-based drugs. We believe that our work not only enriches the library of photocleavable phosphoramidites available for bioconjugation but also paves the way for developing spatiotemporal-controlled, orthogonal-regulated DNA-based logic devices for a range of applications in materials science, polymers, chemistry, and biology.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Clément Morville
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jing Yi Tee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Frédéric Bolze
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Su C, Ren X, Yang F, Li B, Wu H, Li H, Nie F. Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC. Drug Deliv 2022; 29:99-110. [PMID: 34964410 PMCID: PMC8725955 DOI: 10.1080/10717544.2021.2021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/26/2022] Open
Abstract
Due to the lack of safe, effective, and gene-targeted delivery technology. In this study, we have prepared nanobubbles loaded PDLIM5 siRNA (PDLIM5siRNA-NBs) to investigate the transfection efficiency and their antagonism in drug resistance in combination with ultrasound irradiation for non-small-cell lung cancer (NSCLC). Research results show that the PDLIM5 siRNA are effectively bound to the shell of NBs with a mean diameter of 191.6 ± 0.50 nm and a Zeta potential of 11.8 ± 0.68 mV. And the ultrasonic imaging indicated that the PDLIM5 siRNA NBs maintain the same signals as the microbubbles (SonoVue). Under the optimized conditions of 0.5 W/m2 ultrasound intensity and 1 min irradiation duration, the highest transfection efficiency of PC9GR cells was 90.23 ± 1.45%, which resulted in the inhibition of PDLIM5 mRNA and protein expression. More importantly, the anti-tumor effect of fabricated PDLIM5siRNA-NBs with the help of ultrasound irradiation has been demonstrated to significantly inhibit tumor cell growth and promote apoptosis. Therefore, NBs carrying PDLIM5siRNA may have the potential to act as gene vectors combined with ultrasound irradiation to antagonize drug resistance for NSCLC.
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, China
| | - XiaoJun Ren
- Department of Pediatric Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Wu
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
10
|
Li H, Zhang K, Binzel DW, Shlyakhtenko LS, Lyubchenko YL, Chiu W, Guo P. RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biol 2021; 18:2390-2400. [PMID: 33845711 PMCID: PMC8632126 DOI: 10.1080/15476286.2021.1915620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
The quest for artificial RNA viral complexes with authentic structure while being non-replicative is on its way for the development of viral vaccines. RNA viruses contain capsid proteins that interact with the genome during morphogenesis. The sequence and properties of the protein and genome determine the structure of the virus. For example, the Pariacoto virus ssRNA genome assembles into a dodecahedron. Virus-inspired nanotechnology has progressed remarkably due to the unique structural and functional properties of viruses, which can inspire the design of novel nanomaterials. RNA is a programmable biopolymer able to self-assemble sophisticated 3D structures with rich functionalities. RNA dodecahedrons mimicking the Pariacoto virus quasi-icosahedral genome structures were constructed from both native and 2'-F modified RNA oligos. The RNA dodecahedron easily self-assembled using the stable pRNA three-way junction of bacteriophage phi29 as building blocks. The RNA dodecahedron cage was further characterized by cryo-electron microscopy and atomic force microscopy, confirming the spontaneous and homogenous formation of the RNA cage. The reported RNA dodecahedron cage will likely provide further studies on the mechanisms of interaction of the capsid protein with the viral genome while providing a template for further construction of the viral RNA scaffold to add capsid proteins for the assembly of the viral nucleocapsid as a model. Understanding the self-assembly and RNA folding of this RNA cage may offer new insights into the 3D organization of viral RNA genomes. The reported RNA cage also has the potential to be explored as a novel virus-inspired nanocarrier.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Wang H, Guo P. Radiolabeled RNA Nanoparticles for Highly Specific Targeting and Efficient Tumor Accumulation with Favorable In Vivo Biodistribution. Mol Pharm 2021; 18:2924-2934. [PMID: 34212728 DOI: 10.1021/acs.molpharmaceut.1c00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic efficiency and toxicity are two of the three critical factors in molecular therapy and pharmaceutical drug development. Specific tumor targeting and rapid renal excretion contribute to improving efficiency and reducing toxicity. We recently found that RNA nanoparticles display rubber-like properties, enabling them to deliver therapeutics to cancer with high efficiency. Off-target RNA nanoparticles were rapidly cleared by renal excretion, resulting in nontoxicity. However, previous biodistribution studies relied mainly on fluorescent markers, which can cause interference from fluorophore quenching and autofluorescence. Thus, the quantification of biodistribution requires further scrutiny. In this study, radionuclide [3H] markers were used for quantitative pharmacokinetic (PK) studies to elucidate the favorable PK profile of RNA nanoparticles. Approximately 5% of [3H]-RNA nanoparticles accumulated in tumors, in contrast to the 0.7% tumor accumulation reported in the literature for other kinds of nanoparticles. The amount of [3H]-RNA nanoparticles accumulated in tumors was higher than that in the liver, heart, lung, spleen, and brain throughout the entire process after IV injection. [3H]-RNA nanoparticles rapidly reached the tumor vasculature within 30 min and remained in tumors for more than 2 days. Nontargeting [3H]-RNA nanoparticles were found in the urine 30 min after IV injection without degradation and processing, and more than 55% of the IV-injected radiolabeled RNA nanoparticles were cleared from the body within 12 h, while the other 45% includes the radiative counts that cannot be recovered due to whole-body distribution and blood dilution after intravenous injection. The high specificity of tumor targeting, fast renal excretion, and low organ accumulation illustrate the high therapeutic potential of RNA nanoparticles in cancer treatment as efficient cancer-targeting carriers with low toxicity and side effects.
Collapse
Affiliation(s)
- Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Chen C, Shen M, Liao H, Guo Q, Fu H, Yu J, Duan Y. A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer. J Nanobiotechnology 2021; 19:55. [PMID: 33632232 PMCID: PMC7905927 DOI: 10.1186/s12951-021-00800-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the most biologically aggressive breast cancers and lacks effective treatment options, resulting in a poor prognosis. Therefore, studies aiming to explore new therapeutic strategies for advanced TNBC are urgently needed. According to recent studies, microRNA-124 (miR124) not only inhibits tumour growth but also increases the sensitivity of TNBC to paclitaxel (PTX), suggesting that a platform combining PTX and miR124 may be an advanced solution for TNBC. Results Herein, we constructed a stepped cleavable calcium phosphate composite lipid nanosystem (CaP/LNS) to codeliver PTX and miR124 (PTX/miR124-NP). PTX/miR124-NP exhibited superior tumor microenvironment responsive ability, in which the surface PEG layer was shed in the mildly acidic environment of tumor tissues and exposed oligomeric hyaluronic acid (o-HA) facilitated the cellular uptake of CaP/LNS by targeting the CD44 receptor on the surface of tumor cells. Inside tumour cells, o-HA detached from CaP/LNS due to the reduction of disulfide bonds by glutathione (GSH) and inhibited tumour metastasis. Then, PTX and miR124 were sequentially released from CaP/LNS and exerted synergistic antitumour effects by reversing the Epithelial-Mesenchymal Transition (EMT) process in MDA-MB-231 cells. Moreover, PTX/miR124-NP showed significant antitumour efficiency and excellent safety in mice bearing MDA-MB-231 tumours. Conclusion Based on these results, the codelivery of PTX and miR124 by the CaP/LNS nanosystem might be a promising therapeutic strategy for TNBC.![]()
Collapse
Affiliation(s)
- Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China. .,NHC Key Laboratory of Reproduction Regulation, (Shanghai Institute of Planned Parenthood Research), Fudan University, and Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China.
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. NANO RESEARCH 2021; 14:2067-2089. [PMID: 33456721 PMCID: PMC7796694 DOI: 10.1007/s12274-020-3180-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 05/14/2023]
Abstract
Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
15
|
Ghimire C, Wang H, Li H, Vieweger M, Xu C, Guo P. RNA Nanoparticles as Rubber for Compelling Vessel Extravasation to Enhance Tumor Targeting and for Fast Renal Excretion to Reduce Toxicity. ACS NANO 2020; 14:13180-13191. [PMID: 32902260 PMCID: PMC7799665 DOI: 10.1021/acsnano.0c04863] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rubber is a fascinating material in both industry and daily life. The development of elastomeric material in nanotechnology is imperative due to its economic and technological potential. By virtue of their distinctive physicochemical properties, nucleic acids have been extensively explored in material science. The Phi29 DNA packaging motor contains a 3WJ with three angles of 97°, 125°, and 138°. Here, the rubber-like property of RNA architectures was investigated using optical tweezers and in vivo imaging technologies. The 3WJ 97° interior angle was contracted or stretched to 60°, 90°, and 108° at will to build elegant RNA triangles, squares, pentagons, cubes, tetrahedrons, dendrimers, and prisms. RNA nanoarchitecture was stretchable and shrinkable by optical tweezer with multiple extension and relaxation repeats like a rubber. Comparing to gold and iron nanoparticles with the same size, RNA nanoparticles display stronger cancer-targeting outcomes, while less accumulation in healthy organs. Generally, the upper limit of renal excretion is 5.5 nm; however, the 5, 10, and 20 nm RNA nanoparticles passed the renal filtration and resumed their original structure identified in urine. These findings solve two previous mysteries: (1) Why RNA nanoparticles have an unusually high tumor targeting efficiency since their rubber or amoeba-like deformation property enables them to squeeze out of the leaky vasculature to improve the EPR effect; and (2) why RNA nanoparticles remain non-toxic since they can be rapidly cleared from the body via renal excretion into urine with little accumulation in the body. Considering its controllable shape and size plus its rubber-like property, RNA holds great promises for industrial and biomedical applications especially in cancer therapeutics delivery.
Collapse
Affiliation(s)
| | | | | | - Mario Vieweger
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
17
|
Torelli E, Kozyra J, Shirt-Ediss B, Piantanida L, Voïtchovsky K, Krasnogor N. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synth Biol 2020; 9:1682-1692. [PMID: 32470289 DOI: 10.1021/acssynbio.0c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon. Synthesis is successfully confirmed by atomic force microscopy, and the unpurified transcription reaction mixture is analyzed by an in gel-imaging assay where the transcribed RNA nanoribbons are able to capture the specific dye through the reconstituted split Broccoli aptamer showing a clear green fluorescent band. Finally, we simulate the RNA origami in silico using the nucleotide-level coarse-grained model oxRNA to investigate the thermodynamic stability of the assembled nanostructure in isothermal conditions over a period of time. Our work suggests that the scaffolded origami technique is a viable, and potentially more powerful, assembly alternative to the single-stranded origami technique for future in vivo applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| |
Collapse
|
18
|
Qi X, Liu X, Matiski L, Rodriguez Del Villar R, Yip T, Zhang F, Sokalingam S, Jiang S, Liu L, Yan H, Chang Y. RNA Origami Nanostructures for Potent and Safe Anticancer Immunotherapy. ACS NANO 2020; 14:4727-4740. [PMID: 32275389 DOI: 10.1021/acsnano.0c00602] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapid developments in nucleic acid nanotechnology have enabled the rational design and construction of self-assembling DNA and RNA nanostructures that are highly programmable. We recently developed a replicable single-stranded RNA origami (RNA-OG) technology that allows a long RNA molecule to be programmed to self-assemble into nanostructures of various shapes. Here, we show that such RNA-OG is highly stable in serum/plasma, and we thus exploited its immunostimulatory potential. We demonstrated that the RNA-OG stimulates a potent innate response primarily through a Toll-like receptor 3 (TLR3) pathway. In a murine peritoneal metastatic colon cancer model, intraperitoneally injected RNA-OG induced significant tumor retardation or regression by activating NK- and CD8-dependent antitumor immunity and antagonizing the peritoneal immunosuppressive environment. Unlike polyinosinic/polycytidylic acid (PolyIC), a well-known double-stranded RNA analogue, the RNA-OG treatment did not cause a high level of type-I interferons in the blood nor apparent toxicity upon its systemic administration in the animals. This work establishes the function of RNA-OG as a potent line of TLR3 agonists that are safe and effective for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaodong Qi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaowei Liu
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Lawrence Matiski
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan Rodriguez Del Villar
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Theresa Yip
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Sriram Sokalingam
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shuoxing Jiang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yung Chang
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
19
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
20
|
Wang Z, Ling L, Xia Q, Li X. Disulfide-crosslinked reduction-responsive Prodrug Micelles for On-demand Paclitaxel Release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Guo S, Xu C, Yin H, Hill J, Pi F, Guo P. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1582. [PMID: 31456362 DOI: 10.1002/wnan.1582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The past decade has shown exponential growth in the field of RNA nanotechnology. The rapid advances of using RNA nanoparticles for biomedical applications, especially targeted cancer therapy, suggest its potential as a new generation of drug. After the first milestone of small molecule drugs and the second milestone of antibody drugs, it was predicted that RNA drugs, either RNA itself or chemicals/ligands that target RNA, will be the third milestone in drug development. Thus, a comprehensive assessment of the current therapeutic RNA nanoparticles is urgently needed to meet the drug evaluation criteria. Specifically, the pharmacological and immunological profiles of RNA nanoparticles need to be systematically studied to provide insights in rational design of RNA-based therapeutics. By virtue of its programmability and biocompatibility, RNA molecules can be designed to construct sophisticated nanoparticles with versatile functions/applications and highly tunable physicochemical properties. This intrinsic characteristic allows the systemic study of the effects of various properties of RNA nanoparticles on their in vivo behaviors such as cancer targeting and immune responses. This review will focus on the recent progress of RNA nanoparticles in cancer targeting, and summarize the effects of common physicochemical properties such as size and shape on the RNA nanoparticles' biodistribution and immunostimulation profiles. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio.,Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D. Delivery of Anti-miRNA for Triple-Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting Stem Cell Marker CD133. Mol Ther 2019; 27:1252-1261. [PMID: 31085078 DOI: 10.1016/j.ymthe.2019.04.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a short median time from relapse to death. The increased aggressiveness, drug resistance, disease relapse, and metastasis are associated with the presence of stem cells within tumors. Several stem cell markers, such as CD24, CD44, CD133, ALDH1, and ABCG2, have been reported, but their roles in breast cancer tumorigenesis remain unclear. Herein, we apply RNA nanotechnology to deliver anti-microRNA (miRNA) for TNBC therapy. The thermodynamically and chemically stable three-way junction (3WJ) motif was utilized as the scaffold to carry an RNA aptamer binding to CD133 receptor and a locked nuclei acid (LNA) sequence for miRNA21 inhibition. Binding assays revealed the specific uptake of the nanoparticles to breast cancer stem cells (BCSCs) and TNBC cells. Functional assays showed that cancer cell migration was reduced, miR21 expression was inhibited, and downstream tumor suppressor PTEN and PDCD4 expressions were upregulated. In vitro and in vivo studies revealed that these therapeutic RNA nanoparticles did not induce cytokine secretion. Systemic injection of these RNA nanoparticles in animal trial demonstrated high specificity in TNBC tumor targeting and high efficacy for tumor growth inhibition. These results revealed the clinical translation potential of these RNA nanoparticles for TNBC therapy.
Collapse
Affiliation(s)
- Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|