1
|
He C, Jiang L, Shi X, Zhuo Y, Yuan R, Yang X. Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid. Anal Chim Acta 2025; 1339:343604. [PMID: 39832872 DOI: 10.1016/j.aca.2024.343604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility. However, the low SERS sensitivity of non-noble metal substrates also limited their detection performance. Therefore, it is crucial to design a non-noble metal substrate with high SERS sensitivity for nucleic acid detection. RESULTS In this study, we found that the photo induction (30 min) of Ce-MOF has high SERS performance (abbreviated as Ce-MOF30). It is due to that photo-induction can regulate the energy level of the Ce-MOF and break the benzene-C bonds to introduce a defect energy level, which provides additional charge transfer channels. The Ce-MOF30 substrates can achieve an enhancement factor (EF) of 6.71 × 106 for Methylene blue (MB), about 7-fold higher than pristine Ce-MOF, which is the best Ce-based SERS substrate so far. Finally, a SERS detection platform was fabricated by combining the Mg2+ assisted dual signal amplification for miRNA 141 assay, and the detection limit was 1.72 fM. SIGNIFICANCE This work proposed a simple photo-induction strategy to enhance SERS performance, which supplied a new detection platform for detection of nucleic acid and further expand the application of non-noble metal substrate in SERS field.
Collapse
Affiliation(s)
- Chaoqin He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xichen Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
2
|
Pan Y, Zhao P, Cai W, Fang H, Wang X, Zhao J, Zhu P, Yang H, Ge S, Yu J. MOF@Ag/AAB/Au@Ag composite matrix full-dimensional divergence effect-based SERS paper sensor for rapid carbaryl quantification. Food Chem 2025; 472:142885. [PMID: 39837178 DOI: 10.1016/j.foodchem.2025.142885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates. ZIF-8 with structural flexibility was grown in situ on carbon paper. A rough silver layer with surface like metal etching was clad outside the ZIF-8. Artificial antibody (AAB) with accurate grasping ability was polymerized on the surface of ZIF-8@Ag paper substrate. Au@Ag CSNPs were decorated on the AAB to provide abundant "hot spots". Every functional material layer works together to form a gap and tip region with superior plasmon resonance. The proposed SERS sensor realizes the rapid and accurate on-site screening and localization of carbaryl in food with good correlation responded in the range of 0.01-20 μg·mL-1 and a low detection limit of 5.72 × 10-3 μg·mL-1.
Collapse
Affiliation(s)
- Yujie Pan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Weili Cai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hehe Fang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoru Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Junyu Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
3
|
Yang Z, Zhu K, Yang K, Qing Y, Zhao Y, Wu L, Zong S, Cui Y, Wang Z. One-step detection of nanoplastics in aquatic environments using a portable SERS chessboard substrate. Talanta 2025; 282:127076. [PMID: 39442265 DOI: 10.1016/j.talanta.2024.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R2 = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 μL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.
Collapse
Affiliation(s)
- Zhaoyan Yang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yeming Qing
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Youjiang Zhao
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Abuhelwa M, Singh A, Liu J, Almalaysha M, Carlson AV, Trout KE, Morey A, Kinzel E, Channaiah LH, Almasri M. Fiber optics-based surface enhanced Raman Spectroscopy sensors for rapid multiplex detection of foodborne pathogens in raw poultry. MICROSYSTEMS & NANOENGINEERING 2024; 10:199. [PMID: 39715745 DOI: 10.1038/s41378-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 12/25/2024]
Abstract
A new high-sensitivity, low-cost, Surface Enhanced Raman Spectroscopy (SERS) sensor allows for the rapid multiplex detection of foodborne pathogens in raw poultry. Self-assembled microspheres are used to pattern a hexagonal close-packed array of nanoantennas onto a side-polished multimode fiber core. Each microsphere focuses UV radiation to a photonic nanojet within a layer of photoresist on the fiber which allows the nanoantenna geometry to be controlled. Optimizing the geometry for the excitation layer generates electric field concentrations- referred to as a hotspot- within the analyte, thereby maximizing the Raman signal and improving the signal-to-noise ratio. The side polished configuration with a larger surface area has significantly better performance than the SERS sensor on the fiber tip. The use of additive manufacturing for the fiber polishing jigs as well as the sample testing compartment simplifies the sensor development and testing. Experimental results demonstrate a sensitivity range of 0.4-0.5 cells/ml achieved using raw chicken rinsates spiked with Salmonella typhimurium. Additionally, the sensor demonstrated its capability for multiplex and specific detection of Salmonella and E. coli O157:H7 with an optimal detection time of 10 min. The new sensor addresses a major global foodborne pathogen that poses significant public health concerns and can be readily adapted for the detection of other bacterial and viral pathogens such as E. coli O157:H7, Campylobacter, Listeria, and avian influenza and in other food products, e.g., dairy, beef, and produce, as well as clinical applications.
Collapse
Affiliation(s)
- Mai Abuhelwa
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Arshdeep Singh
- Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiayu Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Mohammed Almalaysha
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | | | - Kate E Trout
- College of Health Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amit Morey
- Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - E Kinzel
- Mechanical and Aerospace Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Mahmoud Almasri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Gu Y, Pu X, Chen J, Yi L, Bi J, Duan F, Ge K. Recent advances of MOF-based SERS substrates in quantitative analysis of food contaminants: a review. Analyst 2024; 149:4997-5013. [PMID: 39310955 DOI: 10.1039/d4an00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Advancements in food-contaminant detection technologies can significantly improve food safety and human health. Surface-enhanced Raman spectroscopy (SERS) has become the preferred analytical method for food-safety detection owing to its numerous advantages, which include unique 'molecular fingerprinting' features, high sensitivity, rapid responses, and non-invasive characteristics. Raman-signal enhancements rely heavily on high-performance SERS substrates. In recent years, metal-organic framework (MOF)-based SERS substrates have gained attention as promising candidates for developing SERS technologies owing to their distinctive structures and functions. This review comprehensively examines recent advances in MOF-based SERS substrates, focusing on the main role of MOFs in SERS substrates as well as their typical categories and structures, construction methods, and representative applications in food-contaminant detection. First, the primary roles of MOFs in SERS substrates are briefly introduced. Next, a comprehensive overview of the typical categories and structures of MOF-based SERS substrates is discussed. Subsequently, a fundamental view of the general construction methods for MOF-based SERS substrates is presented. Next, the main applications of MOF-based SERS substrates for food-contaminant detection are summarised. Finally, challenges and perspectives, including improvements in SERS performance and stability, and the unification of SERS mechanisms, are addressed and discussed.
Collapse
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xujun Pu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinxin Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fengmin Duan
- YunNan Institute of Measuring and Testing Technology, Kunming, 650228, China.
| | - Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
6
|
Allegretto JA, Dostalek J. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401437. [PMID: 38868917 PMCID: PMC11321619 DOI: 10.1002/advs.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Volatile Organic Compounds (VOC) are a major class of environmental pollutants hazardous to human health, but also highly relevant in other fields including early disease diagnostics and organoleptic perception of aliments. Therefore, accurate analysis of VOC is essential, and a need for new analytical methods is witnessed for rapid on-site detection without complex sample preparation. Surface-Enhanced Raman Spectroscopy (SERS) offers a rapidly developing versatile analytical platform for the portable detection of chemical species. Nonetheless, the need for efficient docking of target analytes at the metallic surface significantly narrows the applicability of SERS. This limitation can be circumvented by interfacing the sensor surface with Metal-Organic Frameworks (MOF). These materials featuring chemical and structural versatility can efficiently pre-concentrate low molecular weight species such as VOC through their ordered porous structure. This review presents recent trends in the development of MOF-based SERS substrates with a focus on elucidating respective design rules for maximizing analytical performance. An overview of the status of the detection of harmful VOC is discussed in the context of industrial and environmental monitoring. In addition, a survey of the analysis of VOC biomarkers for medical diagnosis and emerging applications in aroma and flavor profiling is included.
Collapse
Affiliation(s)
- Juan A. Allegretto
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
| | - Jakub Dostalek
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
- FZU‐Institute of PhysicsCzech Academy of SciencesNa Slovance 2Prague82021Czech Republic
| |
Collapse
|
7
|
Gao X, Liu Y, Wei J, Wang Z, Ma X. A facile dual-mode SERS/fluorescence aptasensor for AFB 1 detection based on gold nanoparticles and magnetic nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124268. [PMID: 38603962 DOI: 10.1016/j.saa.2024.124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.
Collapse
Affiliation(s)
- Xueying Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ying Liu
- Henan Province Food and Salt Industry Inspection Research Institute, Zhengzhou, Henan 450003, China
| | - Jinxiang Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Xing X, Cheng W, Zhou S, Liu H, Wu Z. Recent advances in small-angle scattering techniques for MOF colloidal materials. Adv Colloid Interface Sci 2024; 329:103162. [PMID: 38761601 DOI: 10.1016/j.cis.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/20/2024]
Abstract
This paper reviews the recent progress of small angle scattering (SAS) techniques, mainly including X-ray small angle scattering technique (SAXS) and neutron small angle scattering (SANS) technique, in the study of metal-organic framework (MOF) colloidal materials (CMOFs). First, we introduce the application research of SAXS technique in pristine MOFs materials, and review the studies on synthesis mechanism of MOF materials, the pore structures and fractal characteristics, as well as the spatial distribution and morphological evolution of foreign molecules in MOF composites and MOF-derived materials. Then, the applications of SANS technique in MOFs are summarized, with emphasis on SANS data processing method, structure modeling and quantitative structural information extraction. Finally, the characteristics and developments of SAS techniques are commented and prospected. It can be found that most studies on MOF materials with SAS techniques focus mainly on nanoporous structure characterization and the evolution of pore structures, or the spatial distribution of other foreign molecules loaded in MOFs. Indeed, SAS techniques take an irreplaceable role in revealing the structure and evolution of nanopores in CMOFs. We expect that this paper will help to understand the research status of SAS techniques on MOF materials and better to apply SAS techniques to conduct further research on MOF and related materials.
Collapse
Affiliation(s)
- Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Cheng
- College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Shuming Zhou
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyan Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhang Y, Yao H, Xue C, Xu Y, Yi C, Sun Y, Cui S, Hoa ND, Jouyban A, Jin H, Cui D. Au Nanostars Coated with a Thin Film of MIL-100 (Fe) for SERS-Based Sensing of Volatile Organic Compound Indicators in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:2735-2743. [DOI: 10.1021/acsanm.3c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, People’s Republic of China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chenghan Yi
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiyang Sun
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Nguyen Duc Hoa
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
10
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Ma J, Ning X, Lou Y, Wu D, Min Q, Wang Y, Zhang Q, Pang Y. Raman spectroscopy of optical-trapped single particle using bull's eye nanostructure. OPTICS LETTERS 2023; 48:1204-1207. [PMID: 36857249 DOI: 10.1364/ol.482852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has enabled single nanoparticle Raman sensing with abundant applications in analytical chemistry, biomaterials, and environmental monitoring. Genuine single particle Raman sensing requires a cumbersome technique, such as atomic force microscopy (AFM) based tip-enhanced Raman spectroscopy; SERS-based single particle Raman sensing still collects an ensemble signal that samples, in principle, a number of particles. Here, we develop in situ Raman-coupled optical tweezers, based on a hybrid nanostructure consisting of a single bowtie aperture surrounded by bull's eye rings, to trap and excite a rhodamine-6G-dye-doped polystyrene sphere. We simulated a platform to ensure sufficient enhancement capability for both optical trapping and SERS of a single nanoparticle. Experiments with well-designed controls clearly attribute the Raman signal origin to a single 15-nm particle trapped at the center of a nanohole, and they also clarified the trapping and Raman enhancement role of the bull's eye rings. We claim Raman sensing of a smallest optically trapped particle.
Collapse
|