1
|
Hu J, Duan K, Zhao Y, Xv H, Ge X, Lin M, Zhu H, Chen D, Deng H, Lee BH. Hyperglycemia-responsive nitric oxide-releasing biohybrid cryogels with cascade enzyme catalysis for enhanced healing of infected diabetic wounds. J Control Release 2024; 378:912-931. [PMID: 39724951 DOI: 10.1016/j.jconrel.2024.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Diabetic wound infections are a frequent complication for diabetic patients, and conventional treatment for combating diabetic wound infections relies on antibiotics. However, the misuse and overuse of antibiotics have led to the emergence of drug-resistant bacteria, making these infections challenging to treat. Thus, there is an urgent need for alternative strategies to effectively manage diabetic wound infections. Herein, we have developed a hyperglycemia-responsive antibacterial cryogel system that can generate and release hydrogen peroxide (H2O2) and nitric oxide (NO). This system involves incorporating glucose oxidase (GO) and L-Arginine (L-Arg: A) into hyaluronic acid aldehyde methacryloyl (HAAMA: H) and gelatin methacryloyl (GelMA: G) hybrid cryogels (GOA@HG). HAAMA facilitated higher loading and longer stability of L-Arg and GO via a Schiff base reaction. In vitro studies demonstrate that GOA@HG cryogels exhibited outstanding breathability, effective exudate management, and excellent hemostasis capabilities. Moreover, this system could consume excess glucose in diabetic wounds and efficiently eliminate bacteria through the cascaded release of H2O2 and NO without causing antibiotic resistance. In vivo studies further reveal that GOA@HG cryogels significantly enhanced the healing of infected diabetic wounds by inhibiting bacterial growth, accelerating blood vessel formation, and promoting collagen deposition. Overall, GOA@HG cryogels displayed remarkable wound dressing properties and synergistic antimicrobial effects owing to glucose-responsive H2O2 and NO release, which could serve as a highly efficient therapeutic strategy for treating infected diabetic wounds.
Collapse
Affiliation(s)
- Jiajun Hu
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Kairui Duan
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yueming Zhao
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Hangbin Xv
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinxin Ge
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mian Lin
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Hu Zhu
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Dingze Chen
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Bae Hoon Lee
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
2
|
Yang H, Chen Q, Qiang H, Wang B, Chen J, Xie Y, Peng L, Zhao H, Tian J. Corrole-based photothermal nanocomposite hydrogel with nitric oxide release for diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00730-X. [PMID: 39653317 DOI: 10.1016/j.actbio.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The management of chronic diabetic wounds remains a significant challenge due to persistent bacterial infections and impaired angiogenesis. Herein, we reported a nanocomposite hydrogel (M/P-SNO/G) incorporated with M/P-SNO nanoparticles engineered by supramolecular assembly of the photosensitizing mono-carboxyl corrole (MCC) and S-nitrosothiol-modified polyethylene glycol (mPEG-SNO) for synergistic photothermal therapy (PTT)/nitric oxide (NO) treatment of diabetic wounds. The strong π-π interaction among aggregated MCC in M/P-SNO enhances the optical absorption and photothermal ability, thereby facilitating the precise release of NO upon laser irradiation. The hydrogel matrix, composed of oxidized hyaluronic acid and carboxymethyl chitosan crosslinked by Schiff-base, demonstrates good injectability and self-healing characteristics, providing an ideal environment for wound repair. As expected, M/P-SNO/G exhibits a desirable photothermal performance and a controlled laser-responsive NO release, realizing enhanced bactericidal effect and anti-biofilm ability in vitro. In a full-thickness skin defect model on diabetic mice, M/P-SNO/G has proven effective in bacteria clearance and angiogenesis, significantly accelerating wound healing. This study presents a feasible supramolecular strategy to develop diabetic wound dressings with synergistic PTT/NO treatment. STATEMENT OF SIGNIFICANCE: Developing advanced dressings that simultaneously eliminate bacteria and accelerate wound recovery is essential for treating diabetic wounds. This study developed a nanocomposite hydrogel (M/P-SNO/G) featuring the synergistic effect of photothermal therapy (PTT) and nitric oxide (NO) treatment to accelerate infected diabetic wound healing. M/P-SNO nanoparticles within the hydrogel are self-assembled through the hydrophobic photosensitizing mono-carboxyl corrole (MCC) and the hydrophilic NO-releasing polymer (mPEG-SNO), where highly aggregated MCC molecules ensure superior photothermal performance. Meanwhile, the temperature increase induced by the photothermal effect activates NO release from the hydrogel. Under 660 nm laser irradiation, M/P-SNO/G demonstrates a PTT/NO synergy to effectively inhibit bacterial proliferation and promote angiogenesis, offering significant benefits in diabetic wound repair and further expanding the biomedical applications of corroles.
Collapse
Affiliation(s)
- Haixia Yang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huaqiong Qiang
- The Affiliated Hospital of Hubei Provincial Government (Hubei Rehabilitation Hospital), Wuhan 430071, China.
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junyang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingling Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyan Peng
- Department of Otorhinolaryngology, Tongji hospital, Tongji medical college, Huazhong University of Science and technology, Wuhan 430030, China.
| | - Huanhuan Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Lai X, Yu L, Huang X, Gardner W, Bamford SE, Pigram PJ, Wang S, Brun APL, Muir BW, Song J, Wang Y, Hsu HY, Chan PWH, Shen HH. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv Healthc Mater 2024; 13:e2403046. [PMID: 39263842 DOI: 10.1002/adhm.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Xiangyi Huang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Sarah E Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Shuhong Wang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | | | - Jiangning Song
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Shanghai, Wenzhou, 325027, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Bai G, Niu C, Liang X, Li L, Feng Y, Wei Z, Chen K, Bohinc K, Guo X. Engineering Robust Silver-Decorated calcium peroxide Nano-Antibacterial Platforms for chemodynamic enhanced sterilization. J Colloid Interface Sci 2024; 680:684-695. [PMID: 39536546 DOI: 10.1016/j.jcis.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Calcium peroxide (CaO2) is commonly used as a hydrogen peroxide (H2O2) donor to eliminate bacterial infections. However, the rapid dissociation of CaO2 and the explosive release of H2O2 have limited the development of CaO2 in the antibacterial field. Therefore, a series of silver nanoparticles (AgNPs) functionalized bacteria-triggered smart hydrogels (CSA-H) that integrate sustained release of nanoparticles and localized chemodynamic sterilization were constructed. The pH-responsive hydrogel formed through the Schiff base reaction enables the responsive release of CaO2 nanoparticles while simultaneously regulating the concentration of H2O2 within the bacterial infection microenvironment. AgNPs are capable of reacting with H2O2 under mildly acidic conditions to produce hydroxyl radicals with enhanced antimicrobial activity. The antimicrobial results demonstrated that AgNPs functionalized silicon dioxide-coated calcium peroxide (CaO2@SiO2/AgNPs) nanoparticles exhibited enhanced bactericidal activity compared to AgNPs or CaO2 alone. Furthermore, CSA-H hydrogels exhibited significant antibacterial activity against S. aureus and E. coli under the dual effect of AgNPs and pH-driven Fenton-like reactions. This chemodynamic antibacterial platform is environmentally responsive and provides a promising strategy for creating multifunctional hydrogels loaded with nano-enzymes, thus advancing the development of AgNPs in chemodynamic-antibacterial related applications.
Collapse
Affiliation(s)
- Ge Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chunhua Niu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; Department of Petroleum and Chemical, Bayingoleng Vocational and Technical College, Bayingoleng 841000, PR China
| | - Xuexue Liang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lan Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Yulong Feng
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Zhong Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Xuhong Guo
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Chemical Engineering and International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Qing F, Sui L, He W, Chen Y, Xu L, He L, Xiao Q, Guo T, Liu Z. IRF7 Exacerbates Candida albicans Infection by Compromising CD209-Mediated Phagocytosis and Autophagy-Mediated Killing in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1932-1944. [PMID: 38709167 DOI: 10.4049/jimmunol.2300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Lina Sui
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Wenji He
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Yayun Chen
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Li Xu
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Gastroenterology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Zhiping Liu
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Ruan L, Pan C, Ran X, Wen Y, Lang R, Peng M, Cao J, Yang J. Dual-Delivery Temperature-Sensitive Hydrogel with Antimicrobial and Anti-Inflammatory Brevilin A and Nitric Oxide for Wound Healing in Bacterial Infection. Gels 2024; 10:219. [PMID: 38667638 PMCID: PMC11049419 DOI: 10.3390/gels10040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson's staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Linghui Ruan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Chengfeng Pan
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Xianting Ran
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Yonglan Wen
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Rui Lang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Jiafu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| |
Collapse
|
8
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
9
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
10
|
Zhang Y, Li L, Liu H, Zhang H, Wei M, Zhang J, Yang Y, Wu M, Chen Z, Liu C, Wang F, Wu Q, Shi J. Copper(II)-infused porphyrin MOF: maximum scavenging GSH for enhanced photodynamic disruption of bacterial biofilm. J Mater Chem B 2024; 12:1317-1329. [PMID: 38229564 DOI: 10.1039/d3tb02577b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.
Collapse
Affiliation(s)
- Yaoxin Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Linpei Li
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Hui Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu 476100, China
| | - Haixia Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Menghao Wei
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Junqing Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Mengnan Wu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Faming Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, China.
| | - Qiang Wu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Paul S, Ashrit P, Kumar M, Mete S, Ghosh S, Vemula PK, Mukherjee A, De P. Photostimulated Extended Nitric Oxide (NO) Release from Water-Soluble Block Copolymer to Enhance Antibacterial Activity. Biomacromolecules 2024; 25:77-88. [PMID: 38048403 DOI: 10.1021/acs.biomac.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
N-Nitrosamines are well established motifs to release nitric oxide (NO) under photoirradiation. Herein, a series of amphiphilic N-nitrosamine-based block copolymers (BCPx-NO) are developed to attain controlled NO release under photoirradiation (365 nm, 3.71 mW/cm2). The water-soluble BCPx-NO forms micellar architecture in aqueous medium and exhibits a sustained NO release of 92-160 μM within 11.5 h, which is 36.8-64.0% of the calculated value. To understand the NO release mechanism, a small molecular NO donor (NOD) resembling the NO releasing functional motif of BCPx-NO is synthesized, which displays a burst NO release in DMSO within 2.5 h. The radical nature of the released NO is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The gradual NO release from micellar BCPx-NO enhances antibacterial activity over NOD and exhibits a superior bactericidal effect on Gram-positive Staphylococcus aureus. In relation to biomedical applications, this work offers a comprehensive insight into tuning light-triggered NO release to improve antibacterial activity.
Collapse
Affiliation(s)
| | - Priya Ashrit
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Sourav Mete
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | | |
Collapse
|
12
|
Zhang J, Zhao S, Zhang S, Zhu H, Zhang Y, Li L, Liu C, Shi J. A nanozyme-reinforced injectable photodynamic hydrogel for combating biofilm infection. J Mater Chem B 2023; 11:10108-10120. [PMID: 37853796 DOI: 10.1039/d3tb01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bacterial biofilm-associated infectious diseases remain serious menaces to human health. Recently, photodynamic therapy (PDT) has become a prospective strategy for combating biofilm infection. However, anaerobic conditions in a biofilm greatly inhibit its therapeutic efficacy. Here, a nanozyme-reinforced injectable hydrogel is prepared using Ca2+-crosslinked sodium alginate incorporated with photosensitizer-loaded MnO2 nanosheets and CaO2 nanoparticles for O2 self-sufficient PDT to eradicate biofilm infection. In our design, CaO2 reacts with water to produce locally concentrated H2O2, which could be catalyzed by MnO2 nanosheets (catalase-mimic nanozymes) to generate O2 and greatly relieve the hypoxic conditions in the biofilm, thus significantly strengthening PDT efficacy. In vitro assays confirmed that the hybrid hydrogel not only exhibits high-performance bactericidal activity in combating both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli but also shows great efficacy in eliminating biofilm infection. Moreover, benefiting from its good syringeability, the hybrid hydrogel is prone to fit irregular wounds and exhibits high efficiency in promoting wound healing in a biofilm-infected mice model. Besides, no obvious toxicity is detected in the hybrid hydrogel. Overall, we envision that our designed hydrogel could provide a prospective solution for combating biofilm-associated infections.
Collapse
Affiliation(s)
- Junqing Zhang
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Shuang Zhao
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Shen Zhang
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Hao Zhu
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Yaoxin Zhang
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Linpei Li
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Chaoqun Liu
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475001, P. R. China
| | - Jiahua Shi
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| |
Collapse
|
13
|
Li W, Yang N, Tan X, Liu Z, Huang Y, Yuan R, Liu L, Ge L. Layer-by-layer microneedle patch with antibacterial and antioxidant dual activities for accelerating bacterial-infected wound healing. Colloids Surf B Biointerfaces 2023; 231:113569. [PMID: 37826964 DOI: 10.1016/j.colsurfb.2023.113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch). The obtained CGH/GTA MN patch could effectively puncture the skin, and exhibit properties of pH-responsive TA and GLAA release. In vitro experiments showed that the obtained CGH/GTA MN patch has excellent antioxidative (scavenging DPPH efficacy is above 80 %, and scavenging ABTS efficiency reaches about 100 %), antibacterial (antibacterial rates of nearly 100 % for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), biodegradable, and biocompatible properties. In the S. aureus-infected rat wounds, the CGH/GTA MN patch could efficiently accelerate infected-wound healing by eliminating S. aureus infection, inhibiting inflammation, promoting angiogenesis, and accelerating epidermal regeneration. Thus, this study will provide a promising strategy to heal bacterial-infected wounds.
Collapse
Affiliation(s)
- Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023 PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China.
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
14
|
Yu YL, Wu JJ, Lin CC, Qin X, Tay FR, Miao L, Tao BL, Jiao Y. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil Med Res 2023; 10:21. [PMID: 37143145 PMCID: PMC10158155 DOI: 10.1186/s40779-023-00454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Treatment of methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium (Ti) implants. There is a need to explore more effective approaches for the treatment of MRSA biofilm infections. METHODS Herein, an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles (PDA), nitric oxide (NO) release donor sodium nitroprusside (SNP) and osteogenic growth peptide (OGP) onto Ti implants, denoted as Ti-PDA@SNP-OGP. The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy, X-ray photoelectron spectroscope, water contact angle, photothermal property and NO release behavior. The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2',7'-dichlorofluorescein diacetate probe, 1-N-phenylnaphthylamine assay, adenosine triphosphate intensity, o-nitrophenyl-β-D-galactopyranoside hydrolysis activity, bicinchoninic acid leakage. Fluorescence staining, assays for alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization, quantitative real‑time reverse transcription‑polymerase chain reaction, and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells (MSCs), RAW264.7 cells and their co-culture system. Giemsa staining, ELISA, micro-CT, hematoxylin and eosin, Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms, inhibition of inflammatory response, and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo. RESULTS Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light irradiation, and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species (ROS)-mediated oxidative stress, destroying bacterial membrane integrity and causing leakage of intracellular components (P < 0.01). In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs, but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype (P < 0.05 or P < 0.01). The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways (P < 0.01). In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model (P < 0.01). CONCLUSIONS These findings suggest that Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.
Collapse
Affiliation(s)
- Yong-Lin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Jun-Jie Wu
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Chuan-Chuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, the Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037 China
| | - Xian Qin
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing, 401147 China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA 30912 USA
| | - Li Miao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Bai-Long Tao
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yang Jiao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| |
Collapse
|