1
|
Sun J, Gao X, Qun J, Du X, Bi K, Zhang X, Lin L. Comparative analysis of the survival and gene expression of pathogenic strains Vibrio harveyi after starvation. FEMS Microbiol Lett 2016; 363:fnw250. [PMID: 27810886 DOI: 10.1093/femsle/fnw250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 103 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named luxR, toxR, vhhB, flaA, topA, fur, rpoS, mreB and ftsZ, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except luxR and mreB, were upregulated dramatically compared to the wild, especially topA (23.720-fold), fur (39.400-fold) and toxR (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Jiang Qun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuedi Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Keran Bi
- College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
3
|
Miles S, Carpenter BM, Gancz H, Merrell DS. Helicobacter pylori apo-Fur regulation appears unconserved across species. J Microbiol 2010; 48:378-86. [PMID: 20571957 DOI: 10.1007/s12275-010-0022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
The Ferric Uptake Regulator (Fur) is a transcriptional regulator that is conserved across a broad number of bacterial species and has been shown to regulate expression of iron uptake and storage genes. Additionally, Fur has been shown to be an important colonization factor of the gastric pathogen Helicobacter pylori. In H. pylori, Fur-dependent regulation appears to be unique in that Fur is able to act as a transcriptional repressor when bound to iron as well as in its iron free (apo) form. To date, apo-regulation has not been identified in any other bacterium. To determine whether Fur from other species has the capacity for apo-regulation, we investigated the ability of Fur from Escherichia coli, Campylobacter jejuni, Desulfovibrio vulgaris Hildenborough, Pseudomonas aeruginosa, and Vibrio cholerae to complement both iron-bound and apo-Fur regulation within the context of a H. pylori fur mutant. We found that while some Fur species (E. coli, C. jejuni, and V. cholerae) complemented iron-bound regulation, apo-regulation was unable to be complemented by any of the examined species. These data suggest that despite the conservation among bacterial Fur proteins, H. pylori Fur contains unique structure/function features that make it novel in comparison to Fur from other species.
Collapse
Affiliation(s)
- Shana Miles
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
4
|
Pedersen HL, Ahmad R, Riise EK, Leiros HKS, Hauglid S, Espelid S, Brandsdal BO, Leiros I, Willassen NP, Haugen P. Experimental and computational characterization of the ferric uptake regulator from Aliivibrio salmonicida (Vibrio salmonicida). J Microbiol 2010; 48:174-83. [DOI: 10.1007/s12275-010-9199-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/17/2009] [Indexed: 11/29/2022]
|
5
|
Sun K, Jiao XD, Zhang M, Sun L. DNA adenine methylase is involved in the pathogenesis of Edwardsiella tarda. Vet Microbiol 2010; 141:149-54. [DOI: 10.1016/j.vetmic.2009.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/23/2009] [Accepted: 09/04/2009] [Indexed: 12/24/2022]
|
6
|
Sun K, Cheng S, Wang F, Sun L. Domain analysis of the Edwardsiella tarda ferric uptake regulator. J GEN APPL MICROBIOL 2009; 55:351-8. [PMID: 19940381 DOI: 10.2323/jgam.55.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have shown that the ferric uptake regulator (Fur) of Edwardsiella tarda (Fur(Et)) shares high sequence identity with the Escherichia coli Fur (Fur(Ec)) at the N-terminal DNA-binding region. In the present study, the functional importance of the C-terminal region of Fur(Et) was investigated. It was found that Fur(Et) bearing deletion of the C-terminal 12 residues still possesses most of the repressor activity, whereas Fur(Et) bearing deletions of the C-terminal 16 and more than 16 residues are severely affected in activity. Domain swapping analyses indicated that the chimeric Fur proteins (Et75Ec73 and Et75Vh74) consisting of the N-terminal 1-75 region of Fur(Et) fused to the C-terminal 76-148 region of Fur(Ec) and the C-terminal 76-149 region of the Vibrio harveyi Fur (Fur(Vh)), respectively, are fully active. C92 of Fur(Ec) and C137 of Fur(Vh), which are functionally essential in Fur(Ec) and Fur(Vh), respectively, are also essential in Et75Ec73 and Et75Vh74, respectively. Further study identified an artificial Fur protein, EtMF54, which is composed of the N-terminal 49 residues of Fur(Et) and five artificial residues. Compared to Fur(Et), EtMF54 possesses partial Fur activity that is iron-dependent. These results (i) indicate that there exist certain functional/structural compatibilities among Fur(Et), Fur(Ec), and Fur(Vh) at the C-terminal region; (ii) provide insights to the potential location of the regulatory ion-binding site of Fur(Et).
Collapse
Affiliation(s)
- Kun Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | |
Collapse
|
7
|
Wang HR, Hu YH, Zhang WW, Sun L. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine 2009; 27:4047-55. [DOI: 10.1016/j.vaccine.2009.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/09/2023]
|
8
|
Vitale S, Fauquant C, Lascoux D, Schauer K, Saint-Pierre C, Michaud-Soret I. A ZnS4 Structural Zinc Site in the Helicobacter pylori Ferric Uptake Regulator. Biochemistry 2009; 48:5582-91. [DOI: 10.1021/bi9004396] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sylvia Vitale
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Caroline Fauquant
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - David Lascoux
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale, Jean-Pierre Ebel (UMR 5075 CNRS/CEA/UJF), F-38027 Grenoble Cedex 1, France
| | - Kristine Schauer
- Unité Pathogenèse de Helicobacter, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Christine Saint-Pierre
- Laboratoire des Lésions des Acides Nucléiques, DSM/INAC/Service de Chimie Inorganique et Biologique, UMR E-3 CEA/UJF CNRS FRE 3200, 17 rue des Martyrs, Grenoble F-38054 Cedex 9, France
| | - Isabelle Michaud-Soret
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), l’Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
9
|
Attenuation of Edwardsiella tarda virulence by small peptides that interfere with LuxS/autoinducer type 2 quorum sensing. Appl Environ Microbiol 2009; 75:3882-90. [PMID: 19411415 DOI: 10.1128/aem.02690-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.
Collapse
|
10
|
Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 2009; 72:1208-20. [PMID: 19400801 DOI: 10.1111/j.1365-2958.2009.06718.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur. Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.
Collapse
Affiliation(s)
- Md Arif Sheikh
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|