1
|
Min Song H, Chan Joo J, Hyun Lim S, Jin Lim H, Lee S, Jae Park S. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2022; 366:128114. [PMID: 36283671 DOI: 10.1016/j.biortech.2022.128114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Petrochemical-based plastics cause environmental pollution and threaten humans and ecosystems. Polyhydroxyalkanoate (PHA) is considered a promising alternative to nondegradable plastics since it is eco-friendly and biodegradable polymer having similar properties to conventional plastics. PHA's material properties are generally determined by composition and type of monomers in PHA. PHA can be designed in tailor-made manner for their suitable application areas. Among many monomers in PHAs, ω-hydroxalkanoates such as 3-hydroxypropionate (3HP), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx) and medium-chain-length 3-hydroxyalkanoate such as 3-hydroxyhexanoate (3HHx) and 4-hydroxyvalerate (4HV), have been examined as potential monomers able to confer amorphous and elastomer properties when these are incorporated as comonomer in poly(3-hydroxybutyrate) copolymer that has 3HB as main monomer along with comonomers in different monomer fraction. Herein, recent advances in production of PHAs designed to have amorphous and elastomeric properties from renewable sources such as lignocellulose, levulinic acid, crude glycerol, and waste oil are discussed.
Collapse
Affiliation(s)
- Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Wong HSJ, Bhubalan K, Amirul AAA. A Critical Review on the Economically Feasible and Sustainable Poly(3-Hydroxybutyrate- co-3-hydroxyvalerate) Production from Alkyl Alcohols. Polymers (Basel) 2022; 14:670. [PMID: 35215584 PMCID: PMC8876610 DOI: 10.3390/polym14040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) is the most studied short-chain-length polyhydroxyalkanoates (PHA) with high application importance in various fields. The domination of high-cost propionate and valerate over other 3-hydroxyvalerate (3HV) precursors owing to their wide preference among PHA-producing bacteria has hindered the development of diverse production processes. As alkyl alcohols are mainly produced from inexpensive starting materials through oxo synthesis, they contribute a cost-effective advantage over propionate and valerate. Moreover, alkyl alcohols can be biosynthesized from natural substrates and organic wastes. Despite their great potential, their toxicity to most PHA-producing bacteria has been the major drawback for their wide implementation as 3HV precursors for decades. Although the standard PHA-producing bacteria Cupriavidus necator showed promising alcohol tolerance, the 3HV yield was discouraging. Continuous discovery of alkyl alcohols-utilizing PHA-producing bacteria has enabled broader choices in 3HV precursor selection for diverse P(3HB-co-3HV) production processes with higher economic feasibility. Besides continuous effort in searching for promising wild-type strains, genetic engineering to construct promising recombinant strains based on the understanding of the mechanisms involved in alkyl alcohols toxicity and tolerance is an alternative approach. However, more studies are required for techno-economic assessment to analyze the economic performance of alkyl alcohol-based production compared to that of organic acids.
Collapse
Affiliation(s)
- Hau Seung Jeremy Wong
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| | - Kesaven Bhubalan
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| |
Collapse
|
3
|
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, Louis H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Huong KH, Shantini K, Sharmini R, Amirul AA. Exploring the Potential of 1-Pentanol and Oleic Acid for Optimizing the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA1020. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2473-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Appl Biochem Biotechnol 2015; 176:1315-34. [DOI: 10.1007/s12010-015-1648-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
7
|
Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 2015; 72:487-94. [DOI: 10.1016/j.ijbiomac.2014.08.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022]
|
8
|
Liu Y, Huang S, Zhang Y, Xu F. Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci (China) 2014; 26:1453-1462. [PMID: 25079994 DOI: 10.1016/j.jes.2014.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 12/08/2013] [Indexed: 06/03/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are aliphatic polyesters accumulated intracellularly by both Gram-negative and Gram-positive bacteria. However, compared to the PHAs of Gram-negative bacteria, few endotoxins (lipopolysaccharides, LPS), which would be co-purified with PHAs and cause immunogenic reactions, are found in the PHAs produced by Gram-positive bacteria. A thermophilic Gram-positive bacterium K5, which exhibited good growth and polyhydroxybutyrate (PHB)-accumulating ability, has been isolated and characterized from a biotrickling filter designed for the removal of NOx from flue gas in a coal-fired power plant in China. Based on the biochemical characterization and 16S rRNA gene sequence (Genbank accession no. JX437933), the strain K5 has been identified as Bacillus shackletonii, which has rarely been reported in the literature, and this report is the first time that B. shackletonii has been found to accumulate PHB. The strain K5 was able to utilize glucose as carbon source to synthesize PHB at a broad range of temperatures (from 35 to 50°C), and the ideal temperature was 45°C. The strain K5 could effectively yield PHB of up to 69.9% of its cell dry weight (CDW) (2.28 g/L) in flask experiments employing glucose as carbon source at 45°C, followed by 56.8% and 52.3% of its CDW when using sodium succinate and glycerol as carbon source, respectively. For batch cultivation, the strain K5 was able to produce PHB of up to 72.6% of its cell dry weight (9.76 g/L) employing glucose as carbon source at 45°C and pH7.0.
Collapse
Affiliation(s)
- Yong Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shaobin Huang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education China, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| | - Yongqing Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education China, Guangzhou 510006, China
| | - Fuqian Xu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Li D, March J, Bills T, Holt B, Wilson C, Lowe W, Tolley H, Lee M, Robison R. Gas chromatography-mass spectrometry method for rapid identification and differentiation of Burkholderia pseudomallei
and Burkholderia mallei
from each other, Burkholderia thailandensis
and several members of the Burkholderia cepacia
complex. J Appl Microbiol 2013; 115:1159-71. [DOI: 10.1111/jam.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/07/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Affiliation(s)
- D. Li
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| | - J.K. March
- Department of Microbiology and Molecular Biology; Brigham Young University; Provo UT USA
| | - T.M. Bills
- Department of Microbiology and Molecular Biology; Brigham Young University; Provo UT USA
| | - B.C. Holt
- Department of Statistics; Brigham Young University; Provo UT USA
| | - C.E. Wilson
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| | - W. Lowe
- Department of Microbiology and Molecular Biology; Brigham Young University; Provo UT USA
| | - H.D. Tolley
- Department of Statistics; Brigham Young University; Provo UT USA
| | - M.L. Lee
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| | - R.A. Robison
- Department of Microbiology and Molecular Biology; Brigham Young University; Provo UT USA
| |
Collapse
|
10
|
Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS One 2013; 8:e60318. [PMID: 23593190 PMCID: PMC3617235 DOI: 10.1371/journal.pone.0060318] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
Levulinic acid (LA) can be cost-effectively produced from a vast array of renewable carbohydrate-containing biomaterials. LA could facilitate the commercialization of the polymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and PHBV-based products as carbon substrates. Therefore, this paper focused on the production of PHBV by Ralstonia eutropha with LA for hydroxyvalerate (HV) production, which plays an important role in enhancing the thermal properties of PHBV. Accordingly, the HV content of PHBV varied from 0–40.9% at different concentrations of LA. Stimulation of cell growth and PHBV accumulation were observed when 2–6 g L−1 LA was supplied to the culture. The optimal nitrogen sources were determined to be 0.5 g L−1 ammonium chloride and 2 g L−1 casein peptone. It was determined that the optimal pH for cell growth and PHBV accumulation was 7.0. When the cultivation was performed in large scale (2 L fermenter) with a low DO concentration of 30% and a pH of 7.0, a high maximum dry cell weight of 15.53 g L−1 with a PHBV concentration of 12.61 g L−1 (53.9% HV), up to 81.2% of the dry cell weight, was obtained. The melting point of PHBV found to be decreased as the fraction of HV present in the polymer increased, which resulted in an improvement in the ductility and flexibility of the polymer. The results of this study will improve the understanding of the PHBV accumulation and production by R. eutropha and will be valuable for the industrial production of biosynthesized polymers.
Collapse
|
11
|
Ashby RD, Solaiman DKY, Strahan GD, Zhu C, Tappel RC, Nomura CT. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers. BIORESOURCE TECHNOLOGY 2012; 118:272-280. [PMID: 22705534 DOI: 10.1016/j.biortech.2012.05.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/14/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Glycerine (a biodiesel co-product) and levulinic acid (a pulp and paper co-product) were used as co-substrates for the fermentative synthesis of short-chain polyhydroxyalkanoate (sc-PHA) biopolymers with tunable monomer and molecular weight characteristics. Pseudomonas oleovorans NRRL B-14682 utilized glycerine alone to produce poly(3-hydroxybutyrate) (PHB). When levulinic acid was added to the media at shake-flask scale in concentrations ≤0.6 wt.%, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) copolymers were produced with 3-HV contents ranging from 37 to 97 mol%; a glycerine:levulinic acid ratio of 0.2%:0.8% (w/v) resulted in poly(3-hydroxyvalerate) (PHV). Ten-liter batch fermentations using glycerine:levulinic acid ratios of 1%:0, 0.75%:0.25%, 0.5%:0.5% and 0.25%:0.75% (w/v) resulted in PHB, P(73%-3HB-co-27%-3HV), P(30%-3HB-co-70%-3HV) and PHV with increasing number average molecular weights (×10(3) g/mol) of 328, 511, 728 and 1330, respectively, owing to glycerine-based chain termination. These results provide a novel means by which glycerine and levulinic acid can be used collectively to produce an array of distinct sc-PHA biopolymers.
Collapse
Affiliation(s)
- Richard D Ashby
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | |
Collapse
|