1
|
Canto-Canché B, Burgos-Canul YY, Chi-Chuc D, Tzec-Simá M, Ku-González A, Brito-Argáez L, Carrillo-Pech M, De Los Santos-Briones C, Canseco-Pérez MÁ, Luna-Moreno D, Beltrán-García MJ, Islas-Flores I. Moonlight-like proteins are actually cell wall components in Pseudocercospora fijiensis. World J Microbiol Biotechnol 2023; 39:232. [PMID: 37349471 DOI: 10.1007/s11274-023-03676-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.
Collapse
Affiliation(s)
- Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Yamily Yazmin Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Deysi Chi-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
- Escuela Telebachillerato Comunitario de Xcunya, Calle 20, Mérida, México
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Angela Ku-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Mildred Carrillo-Pech
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - César De Los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Miguel Ángel Canseco-Pérez
- Dirección de Investigación, Evaluación y Posgrado, Universidad Tecnológica de Tlaxcala, Carretera a el Carmen Xalplatlahuaya s/n. El Carmen Xalplatlahuaya, Tlaxcala, Huamantla, C.P. 90500, Mexico
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, División de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León, Gto, C.P. 37150, México
| | | | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México.
| |
Collapse
|
2
|
Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14101989. [PMID: 36297425 PMCID: PMC9612021 DOI: 10.3390/pharmaceutics14101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome.
Collapse
|
3
|
Development of Carbazole Derivatives Compounds against Candida albicans: Candidates to Prevent Hyphal Formation via the Ras1-MAPK Pathway. J Fungi (Basel) 2021; 7:jof7090688. [PMID: 34575726 PMCID: PMC8466151 DOI: 10.3390/jof7090688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Morphogenesis contributes to the virulence of the opportunistic human fungal pathogen Candida albicans. Ras1-MAPK pathways play a critical role in the virulence of C. albicans by regulating cell growth, morphogenesis, and biofilm formation. Ume6 acts as a transcription factor, and Nrg1 is a transcriptional repressor for the expression of hyphal-specific genes in morphogenesis. Azoles or echinocandin drugs have been extensively prescribed for C. albicans infections, which has led to the development of drug-resistant strains. Therefore, it is necessary to develop new molecules to effectively treat fungal infections. Here, we showed that Molecule B and Molecule C, which contained a carbazole structure, attenuated the pathogenicity of C. albicans through inhibition of the Ras1/MAPK pathway. We found that Molecule B and Molecule C inhibit morphogenesis through repressing protein and RNA levels of Ras/MAPK-related genes, including UME6 and NRG1. Furthermore, we determined the antifungal effects of Molecule B and Molecule C in vivo using a candidiasis murine model. We anticipate our findings are that Molecule B and Molecule C, which inhibits the Ras1/MAPK pathway, are promising compounds for the development of new antifungal agents for the treatment of systemic candidiasis and possibly for other fungal diseases.
Collapse
|
4
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
5
|
Kim SW, Joo YJ, Chun YJ, Park YK, Kim J. Cross‐talk between Tor1 and Sch9 regulates hyphae‐specific genes or ribosomal protein genes in a mutually exclusive manner inCandida albicans. Mol Microbiol 2019; 112:1041-1057. [DOI: 10.1111/mmi.14346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Se Woong Kim
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
- HAEL Lab, TechnoComplex Korea University 145Seoul 02841Republic of Korea
| | - Yoo Jin Joo
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Yu Jin Chun
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
- HAEL Lab, TechnoComplex Korea University 145Seoul 02841Republic of Korea
| |
Collapse
|
6
|
Sanahuja I, Fernández-Alacid L, Sánchez-Nuño S, Ordóñez-Grande B, Ibarz A. Chronic Cold Stress Alters the Skin Mucus Interactome in a Temperate Fish Model. Front Physiol 2019; 9:1916. [PMID: 30687126 PMCID: PMC6336924 DOI: 10.3389/fphys.2018.01916] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Temperate fish are particularly sensitive to low temperatures, especially in the northern Mediterranean area, where the cold season decreases fish-farm production and affects fish health. Recent studies have suggested that the skin mucus participates in overall fish defense and welfare, and therefore propose it as a target for non-invasive studies of fish status. Here, we determine the mucus interactome of differentially expressed proteins in a temperate fish model, gilthead sea bream (Sparus aurata), after chronic exposure to low temperatures (7 weeks at 14°C). The differentially expressed proteins were obtained by 2D-PAGE of mucus soluble proteins and further assessed by STRING analyses of the functional interactome based on protein-protein interactions. Complementarily, we determined mucus metabolites, glucose, and protein, as well as enzymes involved in innate defense mechanisms, such as total protease and esterase. The cold mucus interactome revealed the presence of several subsets of proteins corresponding to Gene Ontology groups. "Response to stress" formed the central core of the cold interactome, with up-regulation of proteins, such as heat shock proteins (HSPs) and transferrin; and down-regulation of proteins with metabolic activity. In accordance with the low temperatures, all proteins clustered in the "Single-organism metabolic process" group were down-regulated in response to cold, evidencing depressed skin metabolism. An interactome subset of "Interspecies interaction between species" grouped together several up-regulated mucus proteins that participate in bacterial adhesion, colonization, and entry, such as HSP70, lectin-2, ribosomal proteins, and cytokeratin-8, septin, and plakins. Furthermore, cold mucus showed lower levels of soluble glucose and no adaptation response in total protease or esterase activity. Using zymography, we detected the up-regulation of metalloprotease-like activity, together with a number of fragments or cleaved keratin forms which may present antimicrobial activity. All these results evidence a partial loss of mucus functionality under chronic exposure to low temperatures which would affect fish welfare during the natural cold season under farm conditions.
Collapse
Affiliation(s)
| | | | | | | | - Antoni Ibarz
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Matyushkina DS, Butenko IO, Pobeguts OV, Fisunov GY, Govorun VM. Proteomic response of bacteria during the interaction with a host cell in a model of Mycoplasma gallisepticum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
Roles of Rack1 Proteins in Fungal Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130376. [PMID: 27656651 PMCID: PMC5021465 DOI: 10.1155/2016/4130376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
Pathogenic fungi cause diseases on various organisms. Despite their differences in life cycles, fungal pathogens use well-conserved proteins and pathways to regulate developmental and infection processes. In this review, we focus on Rack1, a multifaceted scaffolding protein involved in various biological processes. Rack1 is well conserved in eukaryotes and plays important roles in fungi, though limited studies have been conducted. To accelerate the study of Rack1 proteins in fungi, we review the functions of Rack1 proteins in model and pathogenic fungi and summarize recent progress on how Rack1 proteins are involved in fungal pathogenesis.
Collapse
|
10
|
Gil-Bona A, Monteoliva L, Gil C. Global Proteomic Profiling of the Secretome of Candida albicans ecm33 Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion. J Proteome Res 2015; 14:4270-81. [DOI: 10.1021/acs.jproteome.5b00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ana Gil-Bona
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Lucía Monteoliva
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| |
Collapse
|
11
|
Lin C, Lin CN, Wang YC, Liu FY, Chien YW, Chuang YJ, Lan CY, Hsieh WP, Chen BS. Robustness analysis on interspecies interaction network for iron and glucose competition between Candida albicans and zebrafish during infection. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 5:S6. [PMID: 25603810 PMCID: PMC4305985 DOI: 10.1186/1752-0509-8-s5-s6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans has emerged as an important model organism for the study of infectious disease. Using high-throughput simultaneously quantified time-course transcriptomics, this study constructed host-pathogen interspecies interaction networks between C. albicans and zebrafish during the adhesion, invasion, and damage stages. Given that iron and glucose have been identified as crucial resources required during the infection process between C. albicans and zebrafish, we focused on the construction of the interspecies networks associated with them. Furthermore, a randomization technique was proposed to identify differentially regulated proteins that are statistically eminent for the three infection stages. The behaviors of the highly connected or differentially regulated proteins identified from the resulting networks were further investigated. "Robustness" is an important system property that measures the ability of the system tolerating the intrinsic perturbations in a dynamic network. This characteristic provides a systematic and quantitative view to elucidate the dynamics of iron and glucose competition in terms of the interspecies interaction networks. Here, we further estimated the robustness of our constructed interspecies interaction networks for the three infection stages. The constructed networks and robustness analysis provided significant insight into dynamic interactions related to iron and glucose competition during infection and enabled us to quantify the system's intrinsic perturbation tolerance ability during iron and glucose competition throughout the three infection stages. Moreover, the networks also assist in elucidating the offensive and defensive mechanisms of C. albicans and zebrafish during their competition for iron and glucose. Our proposed method can be easily extended to identify other such networks involved in the competition for essential resources during infection.
Collapse
|
12
|
Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP. Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J Appl Microbiol 2014; 116:999-1009. [PMID: 24299471 DOI: 10.1111/jam.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 02/03/2023]
Abstract
AIMS Systemic candidiasis is the leading fungal bloodstream infection, and its incidence has been on the rise. Recently, Candida parapsilosis has emerged as an increasingly prevalent fungal pathogen, but little is known about its antigenic profile. Hence, the current work was performed to discover immunogenic proteins of C. parapsilosis using serological proteome analysis. METHODS AND RESULTS Cell wall proteins extracted from C. parapsilosis were resolved by two-dimensional electrophoresis followed by immunoblotting using antisera from experimentally infected mice. Mass spectrometry analysis of the 32 immunoreactive protein spots resulted in the identification of 12 distinct proteins. Among them, 11 proteins were known antigens of Candida albicans, whereas Idh2p was identified for the first time as an immunogenic protein of Candida species. Recombinant Idh2p was expressed in Escherichia coli, and its antigenicity was verified by immunoblot analysis. CONCLUSIONS An immunoproteomic approach was successfully applied to identify immunogenic proteins of C. parapsilosis, with Idh2p as a novel candidate antigen. The identified antigens may serve as potential biomarkers for development of diagnostic assay and/or vaccine for C. parapsilosis. SIGNIFICANCE AND IMPACT OF THE STUDY This work represents the first immunoproteomic analysis of C. parapsilosis, which provides new insights into host-pathogen interactions and pathogenesis of C. parapsilosis. The immunogenic proteins could be studied as biomarker candidates for C. parapsilosis.
Collapse
Affiliation(s)
- P Y Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
13
|
Chen B, Zhang A, Xu Z, Li R, Chen H, Jin M. Large-Scale Identification of Bacteria–Host Crosstalk by Affinity Chromatography: Capturing the Interactions of Streptococcus suis Proteins with Host Cells. J Proteome Res 2011; 10:5163-74. [DOI: 10.1021/pr200758q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Chen
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Ran Li
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Huanchun Chen
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, ‡College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| |
Collapse
|
14
|
Wang L, Berndt P, Xia X, Kahnt J, Kahmann R. A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol Microbiol 2011; 81:1484-98. [PMID: 21815950 DOI: 10.1111/j.1365-2958.2011.07783.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In mammalian cells RACK1 serves as a scaffold protein that has a role in integrating inputs from different signalling pathways and affects translation through association with ribosomes. Ustilago maydis contains a seven-WD40 repeat motif protein designated Rak1, which shows 68% identity to RACK1 and 51% identity to Asc1p of Saccharomyces cerevisiae. An asc1 mutant could be complemented by introduction of U. maydis rak1. The deletion of rak1 affected cell growth, cell wall integrity and specifically attenuated cell fusion. This latter defect was caused by reduced expression of prf1 encoding the regulator for pheromone (mfa) and pheromone-receptor genes. Rak1 interacts with a variety of ribosomal proteins and microarray analysis revealed that the deletion of rak1 led to severely reduced expression of rop1, a transcriptional activator of prf1. The constitutive expression of rop1 could rescue the defect of mfa1 expression as well as conjugation tube formation in response to pheromone induction in the rak1 mutant. Moreover, a solopathogenic rak1 mutant failed to respond to plant-derived stimuli, resulting in attenuated filamentation and pathogenicity. This could be partially rescued by constitutive expression of the b heterodimer. These data suggest that rak1 is a regulator of rop1 expression with additional roles after cell fusion.
Collapse
Affiliation(s)
- Lei Wang
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Candida albicans, a major human fungal pathogen. J Microbiol 2011; 49:171-7. [DOI: 10.1007/s12275-011-1064-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|