2
|
Niira K, Ito M, Masuda T, Saitou T, Abe T, Komoto S, Sato M, Yamasato H, Kishimoto M, Naoi Y, Sano K, Tuchiaka S, Okada T, Omatsu T, Furuya T, Aoki H, Katayama Y, Oba M, Shirai J, Taniguchi K, Mizutani T, Nagai M. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. INFECTION GENETICS AND EVOLUTION 2016; 44:106-113. [PMID: 27353186 DOI: 10.1016/j.meegid.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
Porcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes. Therefore, we determined nearly full-length whole-genome sequences of nine Japanese porcine RVCs from seven piglets with diarrhea and two healthy pigs and compared them with published RVC sequences from a database. The VP7 genes of two Japanese RVCs from healthy pigs were highly divergent from other known RVC strains and were provisionally classified as G12 and G13 based on the 86% nucleotide identity cut-off value. Pairwise sequence identity calculations and phylogenetic analyses revealed that candidate novel genotypes of porcine Japanese RVC were identified in the NSP1, NSP2 and NSP3 encoding genes, respectively. Furthermore, VP3 of Japanese porcine RVCs was shown to be closely related to human RVCs, suggesting a gene reassortment event between porcine and human RVCs and past interspecies transmission. The present study demonstrated that porcine RVCs show greater genetic diversity among strains than human and bovine RVCs.
Collapse
Affiliation(s)
- Kazutaka Niira
- Tochigi Prefectural South District Animal Hygiene Service Center, Tochigi, Tochigi 328-0002, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Toshiya Saitou
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Tadatsugu Abe
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsuo Sato
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shinobu Tuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Okada
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Moutelíková R, Prodělalová J, Dufková L. Diversity of VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of porcine rotavirus C: phylogenetic analysis and description of potential new VP7, VP4, VP6, and NSP4 genotypes. Arch Virol 2015; 160:1715-27. [PMID: 25951969 DOI: 10.1007/s00705-015-2438-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Rotavirus C (RVC) is a cause of gastroenteritis in swine and has a worldwide distribution. A total of 448 intestinal or faecal samples from pigs of all ages were tested for viruses causing gastroenteritis. RVC was detected in 118 samples (26.3%). To gain information on virus diversity, the complete coding nucleotide sequences of the VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of seven RVC strains were determined. Phylogenetic analysis of VP7 nucleotide sequence divided studied Czech strains into six G genotypes (G1, G3, G5-G7, and a newly described G10 genotype) based on an 85% identity cutoff value at the nucleotide level. Analysis of the VP4 gene revealed low nucleotide sequence identities between two Czech strains and other porcine (72.2-75.3%), bovine (74.1-74.6%), and human (69.1-69.3%) RVC strains. Thus, we propose that those two Czech porcine strains comprise a new RVC VP4 genotype, P8. Analysis of the VP6 gene showed 79.9-86.8% similarity at the nucleotide level between the Czech strains and other porcine RVC strains. According to the 87% identity cutoff value, we propose the existence of three new RVC VP6 genotypes, I8-I10. Analysis of the NSP4 gene divided porcine RVC strains into two clusters (the E1 genotype and the new E4 genotype, based on an 85% nucleotide sequence identity cutoff value). Our results indicate a degree of high genetic heterogeneity, not only in the variable VP7 and VP4 genes encoding the outer capsid proteins, but also in more-conserved genes encoding the inner capsid protein VP6 and the non-structural proteins NSP2, NSP4, and NSP5. This emphasizes the need for a whole-genome-sequence-based classification system.
Collapse
Affiliation(s)
- Romana Moutelíková
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic,
| | | | | |
Collapse
|
5
|
VP6 gene diversity in 11 Brazilian strains of porcine group C rotavirus. Virus Genes 2014; 50:142-6. [PMID: 25331342 DOI: 10.1007/s11262-014-1133-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/15/2023]
Abstract
Porcine group C rotavirus (RVC) is recognised as an enteric pathogen in piglets worldwide. The VP6 gene of RVC is divided into seven I-genotypes. Genotypes I2 and I3 are found in human and bovine strains, respectively; the porcine strains are divided into the other five genotypes (I1, I4-I7). In this study, molecular analysis of nearly the full length of the VP6 gene was performed in 11 Brazilian wild-type porcine RVC strains identified in diarrhoeic faecal samples, which were collected from eight pig farms located in five Brazilian states from piglets of 1-4 weeks of age. The nucleotide sequences of the VP6 gene showed 82.9-100 % identity between the Brazilian strains, 84.9-93.1 % with the prototype Cowden strain, and 82.4-92.2 % with other porcine RVC strains. In the 11 diarrhoeic faecal samples analysed in this study, three distinct porcine RVC genotypes (I1, I5, and I6) were identified and none were predominant. The results presented in this study revealed a high nucleotide diversity of the VP6 gene in porcine RVC field strains circulating in Brazil, which highlights the importance of further epidemiological and molecular surveys worldwide.
Collapse
|
6
|
Amimo J, Vlasova A, Saif L. Prevalence and genetic heterogeneity of porcine group C rotaviruses in nursing and weaned piglets in Ohio, USA and identification of a potential new VP4 genotype. Vet Microbiol 2013; 164:27-38. [PMID: 23428382 PMCID: PMC4094028 DOI: 10.1016/j.vetmic.2013.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 01/29/2023]
Abstract
Swine fecal samples collected from seven farms were screened for group C rotaviruses (RVCs) using a reverse transcription-polymerase chain reaction assay. A total of 380 samples were tested and 19.5% were positive. Of the 128 samples collected in 2012, 23.5% from nursing piglets and 8.5% from weaned piglets were RVC positive, with a higher RVC frequency in diarrheic (28.4%) than in non-diarrheic (6.6%) piglets. Two strains (RVC/Pig-wt/USA/RV0104/2011/G3PX and RVC/Pig-wt/USA/RV0143/2012/G6Px) from two different farms were characterized genetically to gain information on virus diversity based on full length sequences of the inner capsid VP6, enterotoxin NSP4 and the outer capsid VP7 and VP4 (partial for RV0104) genes. The VP6 gene of the two strains showed high (99%) nucleotide identity to one another, 84-91% identity to other porcine RVCstrains and 81-82% identity to human and bovine RVC strains. The NSP4 gene analysis revealed that RVC/Pig-wt/USA/RV0104/2011/G3PX and RVC/Pig-wt/USA/RV0143/2012/G6Px strains were not closely related to each other (87% identity), but shared higher identity with prototype RVC/Pig-wt/USA/Cowden/1980/G1Px strain (93% and 89%, respectively) and were more distantly related to human strains (72-76% identity). The VP7 gene analysis indicated that the two strains were distantly related to one another (72% identity). RVC/Pig-wt/USA/RV0143/2012/G6Px was most closely related to porcine RVC G6 strains (82-86% identity), whereas RVC/Pig-wt/USA/RV0104/2011/G3PX was most closely related to porcine HF (G3) strain (94% identity). Analysis of the full length nucleotide sequence of the VP4 gene revealed that RVC/Pig-wt/USA/RV0143/2012/G6Px was distantly related to porcine (75%), bovine (74%) and human (70%) strains. The deduced amino acid identities (69.5-75.6%) of VP4 between RVC/Pig-wt/USA/RV0143/2012/G6Px and other RVCs were low; hence, we propose that this strain comprises a new VP4 genotype. Our results indicate high genetic heterogeneity in RVCs genes and the concurrent co-circulation of different genotypes at the same time. Our findings are useful for the development of more accurate diagnostic tools, for basic research to understand gene function and to provide information for RVC diversity germane to vaccine development.
Collapse
Affiliation(s)
- J.O. Amimo
- Food Animal Health Research Program, OARDC, Dept Vet Prev Med, The Ohio State University, 1680 Madison Avenue, Wooster, 44691 OH, United States
- Dept of Animal Production, Faculty of Vet Med, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya
| | - A.N. Vlasova
- Food Animal Health Research Program, OARDC, Dept Vet Prev Med, The Ohio State University, 1680 Madison Avenue, Wooster, 44691 OH, United States
| | - L.J. Saif
- Food Animal Health Research Program, OARDC, Dept Vet Prev Med, The Ohio State University, 1680 Madison Avenue, Wooster, 44691 OH, United States
| |
Collapse
|
7
|
Marthaler D, Rossow K, Gramer M, Collins J, Goyal S, Tsunemitsu H, Kuga K, Suzuki T, Ciarlet M, Matthijnssens J. Detection of substantial porcine group B rotavirus genetic diversity in the United States, resulting in a modified classification proposal for G genotypes. Virology 2012; 433:85-96. [PMID: 22877843 PMCID: PMC7111968 DOI: 10.1016/j.virol.2012.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 02/05/2023]
Abstract
Rotavirus (RV) is an important cause of gastrointestinal disease in animals and humans. In this study, we developed an RT-PCR to detect RV group B (RVB) and characterized the VP7 (G) gene segment detected in porcine samples. One hundred seventy three samples were tested for RV group A (RVA), RVB, and C (RVC) by RT-PCR and examined for RV-like lesion using histopathology. A majority (86.4%) of the samples had mixed RV infections and co-infections of RVA/RVB/RVC were detected at a higher rate (24.3%) than previously reported. RVB was identified in 46.8% of the 173 samples. An adapted VP7 classification was developed using previously published (n=57) and newly sequenced (n=68) RVB strains, resulting in 20 G genotypes based on an 80% nucleotide identity cutoff value. Our results revealed a broad genetic diversity of porcine RVB strains, suggesting RVB has been the cause of common/pre-existing, yet undiagnosed, disease in pigs.
Collapse
Affiliation(s)
- Douglas Marthaler
- University of Minnesota Veterinary Diagnostic Laboratory College of Veterinary Medicine 1333 Gortner Ave Saint Paul, MN 55108, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|