1
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Wang X, Qin X, Tong L, Zheng J, Dong T, Wang X, Wang Y, Huang H, Yao B, Zhang H, Luo H. Improving the catalytic activity of a detergent-compatible serine protease by rational design. Microb Biotechnol 2023; 16:947-960. [PMID: 36636777 PMCID: PMC10128134 DOI: 10.1111/1751-7915.14218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Serine proteases are among the most important biological additives in various industries such as detergents, leather, animal feed and food. A serine protease gene, Fgapt4, from Fusarium graminearum 2697 was identified, cloned and expressed in Pichia pastoris. The optimal pH and temperature of FgAPT4 were 8.5 and 40°C, respectively. The relative activity was >30% even at 10°C. It had a wide range of pH stability (4.0-12.0) and detergent compatibility. To improve the catalytic activity, a strategy combining molecular docking and evolutionary analysis was adopted. Twelve amino acid residue sites and three loops (A, B and C) were selected as potential hot spots that might play critical roles in the enzyme's functional properties. Twenty-eight mutants targeting changes in individual sites or loops were designed, and mutations with good performance were combined. The best mutant was FgAPT4-M3 (Q70N/D142S/A143S/loop C). The specific activity and catalytic efficiency of FgAPT4-M3 increased by 1.6 (1008.5 vs. 385.9 U/mg) and 2.2-fold (3565.1 vs. 1106.3/s/mM), respectively. Computational analyses showed that the greater flexibility of the substrate pocket may be responsible for the increased catalytic activity. In addition, its application in detergents indicated that FgAPT4-M3 has great potential in washing.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Identification of Exoenzymes Secreted by Entomopathogenic Fungus Beauveria pseudobassiana RGM 2184 and Their Effect on the Degradation of Cocoons and Pupae of Quarantine Pest Lobesia botrana. J Fungi (Basel) 2022; 8:jof8101083. [PMID: 36294649 PMCID: PMC9605004 DOI: 10.3390/jof8101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Beauveria pseudobassiana RGM 2184 has shown 80% maximum efficacy against the pest Lobesia botrana in the autumn and winter seasons. This suggests that the strain possesses an interesting battery of enzymes that are cold-adapted to penetrate the thick and hydrophobic cocoon of L. botrana. In this study, screening of the proteolytic, lipolytic, and chitinolytic activity of enzyme extracts secreted by the RGM 2184 strain was carried out in various culture media. The enzyme extracts with the highest activity were subjected to zymography and mass spectrometry. These analyses allowed the identification of two proteases, two lipases, and three chitinases. Comparative analysis indicated that the degree of similarity between these enzymes was substantially reduced when the highest degree of taxonomic relatedness between RGM 2184 and the entomopathogenic fungus strain was at the family level. These results suggest that there is a wide variety of exoenzymes in entomopathogenic fungi species belonging to the order Hypocreales. On the other hand, exoenzyme extract exposure of cocoons and pupae of L. botrana provoked damage at 10 °C. Additionally, an analysis of the amino acid composition of the RGM 2184 exoenzyme grouped them close to the cold-adapted protein cluster. These results support the use of this strain to control pests in autumn and winter. Additionally, these antecedents can form a scaffold for the future characterization of these exoenzymes along with the optimization of the strain’s biocontrol ability by overexpressing them.
Collapse
|
4
|
Xie G, Shao Z, Zong L, Li X, Cong D, Huo R. Heterologous expression and characterization of a novel subtilisin-like protease from a thermophilic Thermus thermophilus HB8. Int J Biol Macromol 2019; 138:528-535. [PMID: 31323269 DOI: 10.1016/j.ijbiomac.2019.07.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Subtilisins are a family of serine proteases used widely throughout the detergent, leather and food industries, with the identification and development of new enzymes holding much potential value. Thermus thermophilus HB8 was examined for serine proteases and found TTHA0724 gene. Sequence analysis of this putative serine protease placed it within the subtilisin family. To obtain active T. thermophilus HB8 subtilisins, three genes encoding prepro-subtilisin, pro-subtilisin and mature-subtilisin were cloned and expressed in Escherichia coli Transetta (DE3). Although direct expression of the mature-subtilisin gene was found to produce inactive inclusion bodies, expression of the pro-subtilisin gene resulted in active mature-subtilisin, indicating that the pro-sequence of translated pro-subtilisin underwent autoproteolysis. The resulting mature-subtilisin exhibited maximal activity between 65 and 85 °C at pH 7.5. The mature-subtilisin showed good stability, maintaining 50% activity after 48 h at 75 °C and >78% activity across the pH range 5.0-9.5. Furthermore, the mature-subtilisin demonstrated broad substrate specificity, with no requirement for the presence of metal ions which are essential for other subtilisin enzymes. Despite this Cu2+ was able to increase enzyme activity, while Ca2+ partially inhibited the activity. These properties suggest that T. thermophilus HB8 mature-subtilisin has potential value in its application in many industries.
Collapse
Affiliation(s)
- Guiqiu Xie
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Zhengkang Shao
- College of Life Science, Jilin University, Changchun, PR China
| | - Li Zong
- College of Life Science, Jilin University, Changchun, PR China
| | - Xingxing Li
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Dengli Cong
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Rui Huo
- College of Pharmaceutical Science, Jilin University, Changchun, PR China.
| |
Collapse
|
5
|
Proteases from Thermophiles and Their Industrial Importance. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Wang J, Wu Y, Gong Y, Yu S, Liu G. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1. ACTA ACUST UNITED AC 2015; 42:1233-41. [DOI: 10.1007/s10295-015-1628-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Abstract
The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1’s regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila.
Collapse
Affiliation(s)
- Juan Wang
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Yaning Wu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Yanfen Gong
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Marine Bioresources and Ecology Shenzhen University 518060 Shenzhen China
| | - Shaowen Yu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Gang Liu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| |
Collapse
|
7
|
Iqbal I, Aftab MN, Afzal M, Ur-Rehman A, Aftab S, Zafar A, Ud-Din Z, Khuharo AR, Iqbal J, Ul-Haq I. Purification and characterization of cloned alkaline protease gene ofGeobacillus stearothermophilus. J Basic Microbiol 2014; 55:160-71. [DOI: 10.1002/jobm.201400190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/05/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Irfana Iqbal
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| | | | - Mohammed Afzal
- Department of Biological Sciences; Kuwait University; Kuwait
| | - Asad Ur-Rehman
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| | - Saima Aftab
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| | - Asma Zafar
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| | - Zia Ud-Din
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| | | | - Jawad Iqbal
- Department of Microbiology; Quaid-e-Azam University; Islamabad Pakistan
| | - Ikram Ul-Haq
- Institute of Industrial Biotechnology; GC University; Lahore Pakistan
| |
Collapse
|
8
|
MS Analysis and Molecular Characterization of Botrytis cinerea Protease Prot-2. Use in Bioactive Peptides Production. Appl Biochem Biotechnol 2013; 170:231-47. [DOI: 10.1007/s12010-013-0186-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
9
|
Characterization, cloning, and heterologous expression of a subtilisin-like serine protease gene VlPr1 from Verticillium lecanii. J Microbiol 2012; 50:939-46. [PMID: 23274980 DOI: 10.1007/s12275-012-2199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/14/2012] [Indexed: 10/27/2022]
Abstract
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg(2+) and Ca(2+) concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme.
Collapse
|