1
|
Presence of hepatitis E virus in commercially available pork products. Int J Food Microbiol 2020; 339:109033. [PMID: 33401188 DOI: 10.1016/j.ijfoodmicro.2020.109033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of hepatitis E virus (HEV) infections in industrialized countries have been foodborne and linked to the consumption of undercooked pork products. To date, data on the prevalence of HEV in pork products sold in the United States is limited and no standard processing method exists for the detection of HEV in foods. In order to develop a processing method for the detection of HEV in pork products, ground pork and pork liver were selected for method development. Murine norovirus (MNV) was used as a process control. A filtration step prior to RNA detection was shown to reduce the level of PCR inhibitors in ground pork and an additional ultracentrifugation process was successful in removing PCR inhibitors in pork liver. MNV RNA was detected in ground pork and liver samples inoculated with 4.7 log10 PFU/g and 3.0 log10 PFU/g, respectively. Using the developed method for viral RNA detection in ground pork and pork liver, 20 packages of ground pork (six 1 g sub-samples per package) and 14 pork livers (four 1 g sub-samples per liver) were screened for the presence of HEV RNA. Fifteen out of 119 (12.6%) ground pork samples tested positive for HEV RNA and 13 out of 20 packages (65%) contained at least one positive sample. Twenty-five of 56 (45%) of pork liver samples were positive for HEV RNA and 6 of 14 livers (43%) had all sub-samples test positive for HEV RNA. Overall, the results indicate ground pork and pig liver as a potential source of HEV.
Collapse
|
2
|
Impact of long-term storage of clinical samples collected from 1996 to 2017 on RT-PCR detection of norovirus. J Virol Methods 2019; 267:35-41. [DOI: 10.1016/j.jviromet.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 02/05/2023]
|
3
|
Wong K, Molina M. Applying Quantitative Molecular Tools for Virus Transport Studies: Opportunities and Challenges. GROUND WATER 2017; 55:778-783. [PMID: 28542984 PMCID: PMC6146963 DOI: 10.1111/gwat.12531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 05/31/2023]
Abstract
Bacteriophages have been used in soil column studies for the last several decades as surrogates to study the fate and transport behavior of enteric viruses in groundwater. However, recent studies have shown that the transport behavior of bacteriophages and enteric viruses in porous media can be very different. The next generation of virus transport science must therefore provide more data on mobility of enteric viruses and the relationship between transport behaviors of enteric viruses and bacteriophages. To achieve this new paradigm, labor intensity devoted to enteric virus quantification method must be reduced. Recent studies applied quantitative polymerase chain reaction (qPCR) to column filtration experiments to study the transport behavior of human adenovirus (HAdV) in porous media under a variety of conditions. A similar approach can be used to study the transport of other enteric viruses such as norovirus. Analyzing the column samples with both qPCR and culture assays and applying multiplex qPCR to study cotransport behavior of more than one virus will provide information to under-explored areas in virus transport science. Both nucleic acid extraction kits and one-step lysis protocols have been used in these column studies to extract viral nucleic acid for qPCR quantification. The pros and cons of both methods are compared herein and solutions for overcoming problems are suggested. As better understanding of the transport behavior of enteric viruses is clearly needed, we strongly advocate for application of rapid molecular tools in future studies as well as optimization of protocols to overcome their current limitations.
Collapse
Affiliation(s)
- Kelvin Wong
- Ecosystem Research Division, USEPA Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens, GA, 30605
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN, 37831
| | - Marirosa Molina
- Ecosystem Research Division, USEPA Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens, GA, 30605
| |
Collapse
|
4
|
Choi YS, Koo ES, Kim MS, Choi JD, Shin Y, Jeong YS. Re-emergence of a GII.4 Norovirus Sydney 2012 Variant Equipped with GII.P16 RdRp and Its Predominance over Novel Variants of GII.17 in South Korea in 2016. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:168-178. [PMID: 28120262 DOI: 10.1007/s12560-017-9278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Noroviruses are major causative pathogen of nonbacterial acute gastroenteritis worldwide. Of the seven genogroups of noroviruses suggested recently, genogroup II genotype 4 (GII.4) had been the most common genotype identified in hospitalized patients in the last few decades. However, since the latter half of 2014, new variants of GII.17 have been reported as the main causes of outbreaks over GII.4 in East Asia and have also occurred in America and Europe. In this study, we monitored norovirus GII in coastal streams at South Gyeongsang province and South Jeolla province of South Korea from March 2015 to May 2016. Norovirus GII.17 capsid sequences were predominantly detected until September 2015 in water samples. However, we found that the number of positive cases of the norovirus GII.4 Sydney 2012 capsid sequence has been increasing since December 2015, overtaking that of GII.17 in 2016. The RdRp genotype of this predominant GII.4 variant in 2016 was identified as GII.P16. The emergence and predominance of the GII.4 pandemic capsid sequence harboring a different RdRp genotype suggested the potential for a future pandemic.
Collapse
Affiliation(s)
- Yong Seon Choi
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Eung Seo Koo
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Man Su Kim
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Duck Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Yongsik Shin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Koo ES, Kim MS, Choi YS, Park KS, Jeong YS. Occurrence of novel GII.17 and GII.21 norovirus variants in the coastal environment of South Korea in 2015. PLoS One 2017; 12:e0172237. [PMID: 28199388 PMCID: PMC5310787 DOI: 10.1371/journal.pone.0172237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Human norovirus (HNoV), a positive-sense RNA virus, is the main causative agent of acute viral gastroenteritis. Multiple pandemic variants of the genogroup II genotype 4 (GII.4) of NoV have attracted great attention from researchers worldwide. However, novel variants of GII.17 have been overtaking those pandemic variants in some areas of East Asia. To investigate the environmental occurrence of GII in South Korea, we collected water samples from coastal streams and a neighboring waste water treatment plant in North Jeolla province (in March, July, and December of 2015). Based on capsid gene region C analysis, four different genotypes (GII.4, GII.13, GII.17, and GII.21) were detected, with much higher prevalence of GII.17 than of GII.4. Additional sequence analyses of the ORF1-ORF2 junction and ORF2 from the water samples revealed that the GII.17 sequences in this study were closely related to the novel strains of GII.P17-GII.17, the main causative variants of the 2014-2015 HNoV outbreak in China and Japan. In addition, the GII.P21-GII.21 variants were identified in this study and they had new amino acid sequence variations in the blockade epitopes of the P2 domain. From these results, we present two important findings: 1) the novel GII.P17-GII.17 variants appeared to be predominant in the study area, and 2) new GII.21 variants have emerged in South Korea.
Collapse
Affiliation(s)
- Eung Seo Koo
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Man Su Kim
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Seon Choi
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, Republic of Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Kim MS, Koo ES, Choi YS, Kim JY, Yoo CH, Yoon HJ, Kim TO, Choi HB, Kim JH, Choi JD, Park KS, Shin Y, Kim YM, Ko G, Jeong YS. Distribution of Human Norovirus in the Coastal Waters of South Korea. PLoS One 2016; 11:e0163800. [PMID: 27681683 PMCID: PMC5040428 DOI: 10.1371/journal.pone.0163800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023] Open
Abstract
The presence of human norovirus in the aquatic environment can cause outbreaks related to recreational activities and the consumption of norovirus-contaminated clams. In this study, we investigated the prevalence of norovirus genogroups I (GI) and II (GII) in the coastal aquatic environment in South Korea (March 2014 to February 2015). A total of 504 water samples were collected periodically from four coastal areas (total sites = 63), of which 44 sites were in estuaries (clam fisheries) and 19 were in inflow streams. RT-PCR analysis targeting ORF2 region C revealed that 20.6% of the water samples were contaminated by GI (13.3%) or GII (16.6%). The prevalence of human norovirus was higher in winter/spring than in summer/fall, and higher in inflow streams (50.0%) than in estuaries (7.9%). A total of 229 human norovirus sequences were identified from the water samples, and phylogenetic analysis showed that the sequences clustered into eight GI genotypes (GI.1, 2, 3, 4, 5, 6, 7, and 9) and nine GII genotypes (GII.2, 3, 4, 5, 6, 11, 13, 17, and 21). This study highlighted three issues: 1) a strong correlation between norovirus contamination via inflow streams and coastal areas used in clam fisheries; 2) increased prevalence of certain non-GII.4 genotypes, exceeding that of the GII.4 pandemic variants; 3) seasonal shifts in the dominant genotypes of both GI and GII.
Collapse
Affiliation(s)
- Man Su Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Eung Seo Koo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Yong Seon Choi
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Ji Young Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Chang Hoon Yoo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Hyun Jin Yoon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Tae-Ok Kim
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Hyun Bae Choi
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Ji Hoon Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Jong Deok Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Yongsik Shin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yong Seok Jeong
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases. J Clin Diagn Res 2016; 10:DE01-5. [PMID: 27134874 DOI: 10.7860/jcdr/2016/15837.7460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the "gold standard" for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Faculty, Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University , Sokoto, Sokoto State, Nigeria
| | - Ahmed Subeh Alshrari
- Faculty, Department of Basic Health Sciences, Faculty of Pharmacy, Northern Border Universiti , Rafha, Saudi Arabia
| | - Ahmad Syahida
- Professor, Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia . UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Zamberi Sekawi
- Professor, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia . UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas. Appl Environ Microbiol 2015; 82:116-23. [PMID: 26475110 DOI: 10.1128/aem.02489-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces.
Collapse
|
9
|
Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl Environ Microbiol 2014; 80:6771-81. [PMID: 25172863 DOI: 10.1128/aem.01981-14] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most persons infected with enterically transmitted viruses shed large amounts of virus in feces for days or weeks, both before and after onset of symptoms. Therefore, viruses causing gastroenteritis may be detected in wastewater, even if only a few persons are infected. In this study, the presence of eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E virus) was investigated in sewage to explore whether their identification could be used as an early warning of outbreaks. Samples of the untreated sewage were collected in proportion to flow at Ryaverket, Gothenburg, Sweden. Daily samples collected during every second week between January and May 2013 were pooled and analyzed for detection of viruses by concentration through adsorption to milk proteins and PCR. The largest amount of noroviruses was detected in sewage 2 to 3 weeks before most patients were diagnosed with this infection in Gothenburg. The other viruses were detected at lower levels. HAV was detected between weeks 5 and 13, and partial sequencing of the structural VP1protein identified three different strains. Two strains were involved in an ongoing outbreak in Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg during spring of 2013. The third strain was unique and was not detected in any patient sample. The method used may thus be a tool to detect incipient outbreaks of these viruses and provide early warning before the causative pathogens have been recognized in health care.
Collapse
|