1
|
Shah S, Damare SR, Mascarenhas-Pereira MBL, Patil J, Parab S, Nair S, Ghosh A. An insight into the prokaryotic diversity from a polymetallic nodule-rich region in the Central Indian Ocean Basin using next generation sequencing approach. Front Microbiol 2024; 15:1295149. [PMID: 38567074 PMCID: PMC10985493 DOI: 10.3389/fmicb.2024.1295149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Deep sea is a vast, dark, and difficult-to-access terrain and is now looked upon as a unique niche harboring diverse microorganism. We used a metataxonomic approach to decipher the microbial diversity present in the water column (surface to near bottom), water overlaying the sediments, and the deep-sea sediments (up to 35 cm) from the Indian Contract Region (ICR) in the Central Indian Ocean Basin (CIOB). Samples were collected from #IRZ (Impact Reference Zone), #PRZ (Potential Reference Zone), and #BC20 (Control site, outside potential mining area) with an average water depth of 5,200 m. 16S rRNA (V3-V4 region) amplicon sequencing on the MiSeq platform resulted in 942,851 ASVs across 65 water and sediment samples. Higher prokaryotic diversity was observed below 200 m in the water column to the seafloor. Proteobacteria was the most dominant bacterial phylum among all the water samples while Firmicutes, Actinobacteria and, Bacteroidota dominated the sediments. Sediment (below 10 cm) was co-dominated by Firmicutes. Thermoplasmata was the dominant archaeal group in the water column while Crenarchaeota was in the sediments. BC20 was less diverse than IRZ and PRZ. Deep Sea microorganisms could play a vital role in the mineralization processes, nutrient cycling, and also different biogeochemical cycles.
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigão, India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | | - Jayesh Patil
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sneha Parab
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sushil Nair
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | |
Collapse
|
2
|
Hu W, Zheng N, Zhang Y, Bartlam M, Wang Y. Spatiotemporal dynamics of high and low nucleic acid-content bacterial communities in Chinese coastal seawater: assembly process, co-occurrence relationship and the ecological functions. Front Microbiol 2023; 14:1219655. [PMID: 37601370 PMCID: PMC10433394 DOI: 10.3389/fmicb.2023.1219655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Studies of high nucleic acid-content (HNA) and low nucleic acid-content (LNA) bacterial communities are updating our view of their distributions and taxonomic composition. However, there are still large gaps in our knowledge of the composition, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities. Here, using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities in the samples collected in summer and winter in Chinese coastal seas. The communities of HNA and LNA bacteria had clear spatiotemporal patterns and LNA bacteria was phylogenetically less diverse than HNA bacteria in both seasons. The distribution of HNA and LNA bacteria were significantly affected by the environmental factors and a significant seasonal-consistent distance-decay patterns were found in HNA and LNA bacteria. Furthermore, a quantitative assessment of ecological processes revealed that dispersal limitation, homogeneous selection exerted important roles in the community assembly of HNA and LNA bacteria. More importantly, we observed seasonality in the co-occurrence relationships: closer inter-taxa connections of HNA bacterial communities in winter than in summer and the opposite is true in the LNA bacterial communities. Some ecological functions, such as: phototrophy, photoautotrophy, oxygenic photoautotrophy, were different between HNA and LNA bacteria. These results provide a better understanding of spatiotemporal patterns, processes, and the ecological functions of HNA and LNA bacterial communities in Chinese coastal seawater.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
3
|
Bose H, Sahu RP, Sar P. Impact of arsenic on microbial community structure and their metabolic potential from rice soils of West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156486. [PMID: 35667424 DOI: 10.1016/j.scitotenv.2022.156486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Paddy soil is a heterogenous ecosystem that harbours diverse microbial communities critical for maintaining ecosystem sustainability and crop yield. Considering the importance of soil in crop production and recent reports on its contamination with arsenic (As) across the South East Asia, its microbial community composition and biogeochemical functions remained inadequately studied. We have characterized the microbial communities of rice soil from eleven paddy fields of As-contaminated sites from West Bengal (India), through metagenomics and amplicon sequencing. 16S rRNA gene sequencing showed considerable bacterial diversity [over 0.2 million Operational Taxonomic Units (OTUs)] and abundance (upto 1.6 × 107 gene copies/g soil). Existence of a core-microbiome (261 OTUs conserved out of a total 141,172 OTUs) across the samples was noted. Most of the core-microbiome members were also found to represent the abundant taxa of the soil. Statistical analyses suggested that the microbial communities were highly constrained by As, Fe K, N, PO43-, SO42- and organic carbon (OC). Members of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Planctomycetes and Thaumarchaeota constituted the core-microbiome. Co-occurrence network analysis displayed significant interaction among diverse anaerobic, SO42- and NO3- reducing, cellulose and other organic matter or C1 compound utilizing, fermentative and aerobic/facultative anaerobic bacteria and archaea. Correlation analysis suggested that taxa which were positively linked with soil parameters that maintain soil health and productivity (e.g., N, K, PO43- and Fe) were adversely impacted by increasing As concentration. Shotgun metagenomics highlighted major metabolic pathways controlling the C (3-hydroxypropionate bicycle), N (Denitrification, dissimilatory NO3- reduction to ammonium), and S (assimilatory SO42- reduction and sulfide oxidation) cycling, As homeostasis (methylation and reduction) and plant growth promotion (polyphosphate hydrolysis and auxin biosynthesis). All these major biogeochemical processes were found to be catalyzed by the members of most abundant/core-community.
Collapse
Affiliation(s)
- Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
4
|
Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J. Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45793-45807. [PMID: 35152353 DOI: 10.1007/s11356-022-19157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities composed of bacteria, archaea and fungi play a pivotal role in driving the biogeochemical cycles in the marine ecosystem. Despite the vastness of the South Indian Ocean, only a few studies reported the simultaneous analysis of bacterial, archaeal and fungal diversity therein, particularly archaeal and fungal communities in deep-sea environments received less attention previously. In this study, microbial diversity, community composition and dynamics in microbial community structure in eight deep-sea sediment samples collected from different sites at varying depths of the South Indian Ocean were explored using Next-Generation Sequencing. In total, 21 bacterial phyla representing 541 OTUs were identified from the eight samples, where phylum Proteobacteria was found as the most abundant bacterial phylum in five out of eight samples. Firmicutes and Chloroflexi were the dominant phyla in the rest of the three samples. In the case of archaea, uncultured species belonging to the phyla Thaumarchaeota and Euryarchaeota were the abundant taxa in all the samples. Similarly, Ascomycota and Basidiomycota were the most abundant fungal phyla present therein. In all the eight samples studied here, about 10-58% and 19-26% OTUs in archaeal and fungal communities were mapped to unclassified taxa respectively, suggesting the lack of representation in databases. Co-occurrence network analysis further revealed that bacterial communities tend to be more dynamic than archaeal and fungal communities. This study provides interesting insights into the microbial diversity, community composition and dynamics in microbial community structure in the deep-sea sediments of the South Indian Ocean.
Collapse
Affiliation(s)
- Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Gao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Zohaib Nawaz
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
5
|
Zhang C, Liu Q, Li X, Wang M, Liu X, Yang J, Xu J, Jiang Y. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143799. [PMID: 33333332 DOI: 10.1016/j.scitotenv.2020.143799] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Microbial communities are a large component of abyssal and hadal benthic environments, especially in deep-sea areas like Yap Trench, they provide a continuous source of nutrients and energy in their unique ecosystems. However, due to sampling difficulties, these microbial communities are relatively understudied. In the summer of 2017, sediment samples were collected from 21 stations around Yap Trench in the Western Pacific Ocean (mostly in the West Caroline Basin), at depths ranging from 3156 to 7837 m. Sediment samples from deep water depths and shallow water depths differed in organic matter content, median grain size, silt-clay content, and biodiversity. The structure of the microbial communities in the surface sediments had distinct relationships with environmental factors and their co-occurrence networks exhibited a clear spatial pattern. In addition, for both prokaryotes or eukaryotes, a combination of variables including silt-clay content, organic matter content, median grain size, and depth had the greatest impact on community structure. It was notable that fungi played important roles in the co-occurrence networks of deep water depth sediment samples while bacteria dominated those of shallow water depth samples. The differences in structure and ecological niches in the different networks were due to differences in sediment texture and organic matter content. Since clay had a positive effect on the diversity of bacteria, it had an indirect positive effect on fungi, leading to differences in biodiversity among different groups. More organic matter meant more nutrients were available for the growth and reproduction of microbes, which led to fewer niche overlaps. This study conducted an extensive and systematic sequencing survey of surface sediments around Yap Trench in the Western Pacific Ocean, providing insight into microbial responses to environmental heterogeneity in deep-sea benthic ecosystems.
Collapse
Affiliation(s)
- Chenru Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Qian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xianrong Li
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiaoshou Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jinpeng Yang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jishang Xu
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Hu B, Xu B, Yun J, Wang J, Xie B, Li C, Yu Y, Lan Y, Zhu Y, Dai X, Huang Y, Huang L, Pan J, Du W. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge. LAB ON A CHIP 2020; 20:363-372. [PMID: 31848560 DOI: 10.1039/c9lc00761j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microorganisms in the deep sea play vital roles in marine ecosystems. However, despite great advances brought by high throughput sequencing and metagenomics, only a small portion of microorganisms living in the environment can be cultivated in the laboratory and systematically studied. In this study, an improved high-throughput microfluidic streak plate (MSP) platform was developed to speed up the isolation of microorganisms from deep-sea sediments and evaluated with deep-sea sediments collected from the Southwest Indian Ridge (SWIR). Based on our previously reported MSP method, we improved its isolation efficiency with a semi-automated droplet picker and improved humidity control to enable long-term cultivation with a low-nutrient medium for up to five months according to the slow-growing nature of most deep-sea species. The improved MSP method allows the isolation of microbes by selection and investigation of microbial diversity by high throughput sequencing of the pooled sample cultures. By picking individual droplets and scale-up cultivation, a total of 772 strains that were taxonomically assigned to 70 species were isolated from the deep-sea sediments in the SWIR, including 15 potential novel species. On the other hand, based on 16S rRNA gene amplicon sequencing analysis, the microbial diversity of the SWIR was studied and documented with culture-dependent and independent methods in this study. The superiority of the MSP platform in revealing the rare biosphere was also evaluated based on amplicon sequencing. The results show that droplet-based single-cell cultivation of the MSP has a much higher ability than traditional agar plate cultivation in obtaining microbial species and more than 90% of operational taxonomic units (OTUs) detected in the MSP pool belong to the rare biosphere. Our results indicate the high robustness and efficiency of the improved MSP platform in revealing the environmentally rare biosphere, especially for slow-growing species. Overall, the MSP platform has a superior ability to recover microbial diversity than conventional agar plates and it was found to hold great potential for recovering rare microbial resources from various environments.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanghuan Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340. [PMID: 27621725 PMCID: PMC5002886 DOI: 10.3389/fmicb.2016.01340] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoxuan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Liu
- Information Network Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lijun Xi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
8
|
Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Sci Rep 2016; 6:25982. [PMID: 27169490 PMCID: PMC4864381 DOI: 10.1038/srep25982] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/25/2016] [Indexed: 02/01/2023] Open
Abstract
Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.
Collapse
|
9
|
Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology. World J Microbiol Biotechnol 2016; 32:78. [PMID: 27038948 DOI: 10.1007/s11274-016-2030-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.
Collapse
|
10
|
Yuan J, Lai Q, Sun F, Zheng T, Shao Z. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 2015; 6:853. [PMID: 26379634 PMCID: PMC4548250 DOI: 10.3389/fmicb.2015.00853] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/05/2015] [Indexed: 12/03/2022] Open
Abstract
The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.
Collapse
Affiliation(s)
- Jun Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; State Key Laboratory of Marine Environmental Science and Key Laboratory of MOE for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; State Key Laboratory of Marine Environmental Science and Key Laboratory of MOE for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| | - Fengqin Sun
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of MOE for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| |
Collapse
|