1
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
2
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K, Deborggraeve S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis 2019; 13:e0007416. [PMID: 31125353 PMCID: PMC6553789 DOI: 10.1371/journal.pntd.0007416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. Methodology/Principle findings We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering different geographical origins) and one reference strain were grown in vitro to the exponential phase. Levels of orthologous proteins quantified in all four serovars and within the typhoidal and non-typhoidal groups were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Conclusions/Significance Our comparative proteome analysis indicated differences in the expression of surface proteins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins between Salmonella Typhimurium and Enteritidis. Our findings may guide future development of novel diagnostics and vaccines, as well as understanding of disease progression. With an estimated 20 million typhoid cases and an even higher number of non-typhoid cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the bacterial species Salmonella enterica and over 2500 different serovars exist, of which four are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella infections. The proteome is the entire set of proteins that is expressed by a genome and the core proteome are all orthologous proteins detected in a given sample set. In this study we have investigated differential expression of the core proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating molecules. Our comparative proteome analysis indicated differences in the expression of surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expression may guide the development of novel diagnostics and vaccines for Salmonella, as well as understanding of disease.
Collapse
Affiliation(s)
- Sara Saleh
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
5
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
6
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|