1
|
Sang S, Song W, Lu L, Ou Q, Guan Y, Tao H, Wang Y, Liu C. The Trimeric Autotransporter Adhesin SadA from Salmonella spp. as a Novel Bacterial Surface Display System. Vaccines (Basel) 2024; 12:399. [PMID: 38675781 PMCID: PMC11054257 DOI: 10.3390/vaccines12040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial surface display platforms have been developed for applications such as vaccine delivery and peptide library screening. The type V secretion system is an attractive anchoring motif for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation. In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB. Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158-172aa and UreB349-363aa). We grafted different protein domains, including mScarlet (red fluorescent protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluorescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa) and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/StmΔygeAΔmurI and pSadBA877-FUM/StmΔygeAΔmurI could elicit a significant mucosal and humoral immunity response. SadA could thus be used as an anchoring motif for the surface expression of large heterologous proteins as a potential strategy for attenuated bacterial vaccine development.
Collapse
Affiliation(s)
- Shuli Sang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Wenge Song
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Lu Lu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Qikun Ou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yiyan Guan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| |
Collapse
|
2
|
Mahmoud RY, Li W, Eldomany RA, Emara M, Yu J. The Shigella ProU system is required for osmotic tolerance and virulence. Virulence 2016; 8:362-374. [PMID: 27558288 DOI: 10.1080/21505594.2016.1227906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro, and for infection.
Collapse
Affiliation(s)
- Rasha Y Mahmoud
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK.,b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Wenqin Li
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| | - Ramadan A Eldomany
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Kafr Elsheikh University , Kafr Elsheikh , Egypt
| | - Mohamed Emara
- b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Jun Yu
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| |
Collapse
|
3
|
Mahmoud RY, Stones DH, Li W, Emara M, El-Domany RA, Wang D, Wang Y, Krachler AM, Yu J. The Multivalent Adhesion Molecule SSO1327 plays a key role in Shigella sonnei pathogenesis. Mol Microbiol 2015; 99:658-73. [PMID: 26481305 DOI: 10.1111/mmi.13255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 12/30/2022]
Abstract
Shigella sonnei is a bacterial pathogen and causative agent of bacillary dysentery. It deploys a type III secretion system to inject effector proteins into host epithelial cells and macrophages, an essential step for tissue invasion and immune evasion. Although the arsenal of bacterial effectors and their cellular targets have been studied extensively, little is known about the prerequisites for deployment of type III secreted proteins during infection. Here, we describe a novel S. sonnei adhesin, SSO1327 which is a multivalent adhesion molecule (MAM) required for invasion of epithelial cells and macrophages and for infection in vivo. The S. sonnei MAM mediates intimate attachment to host cells, which is required for efficient translocation of type III effectors into host cells. SSO1327 is non-redundant to IcsA; its activity is independent of type III secretion. In contrast to the up-regulation of IcsA-dependent and independent attachment and invasion by deoxycholate in Shigella flexneri, deoxycholate negatively regulates IcsA and MAM in S. sonnei resulting in reduction in attachment and invasion and virulence attenuation in vivo. A strain deficient for SSO1327 is avirulent in vivo, but still elicits a host immune response.
Collapse
Affiliation(s)
- Rasha Y Mahmoud
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK.,Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Daniel Henry Stones
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Wenqin Li
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Depu Wang
- The center of Translational Medicine, The First Affiliated Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center, Xi'an Jiao Tong University, Xi'an, China
| | - Anne Marie Krachler
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|