1
|
Mikhailovich V, Heydarov R, Zimenkov D, Chebotar I. Stenotrophomonas maltophilia virulence: a current view. Front Microbiol 2024; 15:1385631. [PMID: 38741741 PMCID: PMC11089167 DOI: 10.3389/fmicb.2024.1385631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen intrinsically resistant to multiple and broad-spectrum antibiotics. Although the bacterium is considered a low-virulence pathogen, it can cause various severe diseases and contributes significantly to the pathogenesis of multibacterial infections. During the COVID-19 pandemic, S. maltophilia has been recognized as one of the most common causative agents of respiratory co-infections and bacteremia in critically ill COVID-19 patients. The high ability to adapt to unfavorable environments and new habitat niches, as well as the sophisticated switching of metabolic pathways, are unique mechanisms that attract the attention of clinical researchers and experts studying the fundamental basis of virulence. In this review, we have summarized the current knowledge on the molecular aspects of S. maltophilia virulence and putative virulence factors, partially touched on interspecific bacterial interactions and iron uptake systems in the context of virulence, and have not addressed antibiotic resistance.
Collapse
Affiliation(s)
- Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Heydarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Danila Zimenkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Jiang YH, Liu T, Shi XC, Herrera-Balandrano DD, Xu MT, Wang SY, Laborda P. p-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity. PEST MANAGEMENT SCIENCE 2023; 79:4083-4093. [PMID: 37291956 DOI: 10.1002/ps.7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Ting Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Mei-Ting Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
3
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
5
|
Recombinant Ax21 protein is a promising subunit vaccine candidate against Stenotrophomonas maltophilia in a murine infection model. Vaccine 2021; 39:4471-4480. [PMID: 34187706 DOI: 10.1016/j.vaccine.2021.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022]
Abstract
Stenotrophomonas maltophilia is an emerging pathogen that can cause several disease manifestations such as bacteremia, meningitis, respiratory tract infections and others. More seriously, this pathogen has a highly evolving antibiotic resistance profile. Antibiotic misuse is further aggravating the situation by inducing the development of multi- and even pan-resistance. Thus, employing diverse strategies to overcome this increasing antibiotic resistance is of paramount importance. In general, vaccination is one of these strategies that prevents the onset of infection, provides long term protection against infection, and most importantly diminishes the antibiotic consumption, thus, resulting in controlling resistance. Unfortunately, vaccine research concerning S. maltophilia is very scarce in the literature. Ax21 protein is an outer membrane protein implicated in several virulence mechanisms of S. maltophilia such as quorum sensing, biofilm formation, and antibiotic resistance. Our computational analysis of Ax21 revealed its potential immunogenicity. In the current study, Ax21 protein of S. maltophilia was cloned and heterologously expressed in Escherichia coli. Mice were immunized with the purified recombinant antigen using Bacillus Calmette-Guérin(BCG) and incomplete Freund's adjuvant (IFA) as immune-adjuvants. Enzyme-linked immunosorbent assay (ELISA) revealed significant antigen-specific IgG1, IgG2a and total IgG levels in immunized mice which reflected successful immune stimulation. Immunized mice that were challenged with S. maltophilia showed a substantialreduction in bacterial bioburden in lungs, liver, kidneys, and heart. In addition, liver histological examination demonstrated a remarkable decrease in pathological signs such as necrosis, vacuolation, bile duct fibrosis and necrosis, infiltration of inflammatory cells, and hemorrhage. Whole cell ELISA and opsonophagocytic assay confirmed the ability of serum antibodies from immunized mice to bind and facilitate phagocytosis of S. maltophilia, respectively. To our knowledge, this is the first report to demonstrate the vaccine protective efficacy of Ax21 outer membrane protein against S. maltophilia infection.
Collapse
|
6
|
Bae N, Park H, Park H, Kim M, Han S. Deciphering the functions of the outer membrane porin OprBXo involved in virulence, motility, exopolysaccharide production, biofilm formation and stress tolerance in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:2527-2542. [PMID: 30073749 PMCID: PMC6638129 DOI: 10.1111/mpp.12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/25/2018] [Accepted: 07/09/2018] [Indexed: 05/24/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium causing bacterial leaf blight disease in rice. Previously, proteomic analysis has shown that the outer membrane protein B in Xoo (OprBXo) is more abundant in the wildtype strain than is the outer membrane protein 1 in the Xoo (Omp1X) knockout mutant. OprBXo shows high homology with OprB, which has been well characterized as a carbohydrate-selective porin in X. citri ssp. citri and Pseudomonas species. However, the functions of OprBXo in Xoo have not yet been documented. To elucidate the functions of OprBXo, we generated the OprBXo-overexpressing mutant, Xoo(OprBXo), and the knockout mutant, XooΔoprBXo(EV). We found that the virulence and migration of Xoo(OprBXo), but not XooΔoprBXo(EV), were markedly reduced in rice. To postulate the mechanisms affected by OprBXo, comparative proteomic analysis was performed. Based on the results of proteomics, we employed diverse phenotypic assays to characterize the functions of OprBXo. Abnormal twitching motility and reduction in swarming motility were observed in Xoo(OprBXo). Moreover, Xoo(OprBXo) decreased, but XooΔoprBXo(EV) enhanced, exopolysaccharide production and biofilm formation. The chemotactic ability of XooΔoprBXo(EV) was dramatically lower than that of Xoo(EV) in the presence of glucose and xylose. Xoo(OprBXo) was resistant to sodium dodecylsulphate and hydrogen peroxide, but XooΔoprBXo(EV) was highly sensitive compared with Xoo(EV). Thus, OprBXo is not only essential for chemotaxis and stress tolerance, but also for motility, biofilm formation and exopolysaccharide production, which may contribute to the virulence of Xoo. These results will lead to new insights into the functions of a sugar-selective porin in Xoo.
Collapse
Affiliation(s)
- Nahee Bae
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Hye‐Jee Park
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Hanbi Park
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Minyoung Kim
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Sang‐Wook Han
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| |
Collapse
|
7
|
Park HJ, Han SW. Functional and Proteomic Analyses Reveal That ScpBXv Is Involved in Bacterial Growth, Virulence, and Biofilm Formation in Xanthomonas campestris pv. vesicatoria. THE PLANT PATHOLOGY JOURNAL 2017; 33:602-607. [PMID: 29238284 PMCID: PMC5720608 DOI: 10.5423/ppj.nt.07.2017.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/24/2023]
Abstract
Segregation and condensation protein B (ScpB) is essential for replication and segregation in living organisms. Here, we reported the functions of ScpBXv (ScpB-like protein in Xanthomonas campestris pv. vesicatoria) using phenotypic and proteomic analyses. Growth of XcvΔscpBXv (ScpBXv knockout mutant) was reduced under both slow and fast growth conditions in rich medium, but comparable to this of the wild-type in plant-mimic conditions. Interestingly, the mutant was significantly less virulent than the wild-type in tomato, indicating that ScpBXv is involved in virulence. To investigate ScpBXv-associated mechanisms, comparative proteomic analyses were carried out and the abundance of 187 proteins was altered. Among them, diverse transcriptional regulators involved in biofilm formation and virulence were abundant in the wild-type. We further showed that biofilm formation of XcvΔscpBXv was reduced. This study provides new insights into the functions of ScpBXv in bacterial replication and biofilm formation, which may contribute to the virulence of Xcv.
Collapse
Affiliation(s)
| | - Sang-Wook Han
- Corresponding author. Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail)
| |
Collapse
|
8
|
Wang R, Xu H, Zhao Y, Zhang J, Yuen GY, Qian G, Liu F. Lsp family proteins regulate antibiotic biosynthesis in Lysobacter enzymogenes OH11. AMB Express 2017; 7:123. [PMID: 28618714 PMCID: PMC5469723 DOI: 10.1186/s13568-017-0421-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Ax21 family proteins have been shown to play regulatory roles in plant- and animal-pathogenic species in the bacterial family Xanthomonadaceae, but the protein have not been investigated previously in the non-pathogenic members of this bacterial family. Lysobacter enzymogenes, is a non-pathogenic species known for its capacity as a biocontrol agent of plant pathogens. It is also noted for the production of antimicrobial secondary metabolites, heat stable antifungal factor (HSAF) and WAP-8294A2, that have potential for agricultural and pharmaceutical applications. The species also displays type IV pili-dependent twitching motility and the production of multiple extracellular lytic enzymes as additional biocontrol-related traits. Here, we show that L. enzymogenes strain OH11 possesses three genes widely separated in the OH11 genome that code for unique Ax21-like proteins (Lsp). By comparing the wildtype OH11 with mutant strains having a single lsp gene or a combination of lsp genes deleted, we found that each Lsp protein individually is involved in positive regulation of HSAF and WAP-8294A2 biosynthesis, but the proteins collectively do not exert additive effects in this regulation. None of the Lsp proteins were found to influence twitching motility or the production of three extracellular lytic enzymes. This study is the first to provide evidence linking Ax21-family proteins to antibiotic biosynthesis and, hence, adds new insights into the diversity of regulatory functions of Ax21 family proteins in bacteria.
Collapse
|
9
|
The Ax21 protein influences virulence and biofilm formation in Stenotrophomonas maltophilia. Arch Microbiol 2017; 200:183-187. [PMID: 28965241 PMCID: PMC5758655 DOI: 10.1007/s00203-017-1433-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Stenotrophomonas maltophilia is an antibiotic-resistant Gram-negative pathogen, which is associated with hospital-acquired infection. The genome encodes a protein highly related to the Ax21 protein of Xanthomonas oryzae that is implicated in interactions of this plant pathogen with rice. Here, we report on the pleiotropic nature of ax21 mutation in S. maltophilia and the effects of addition of the Ax21 protein on the restoration of the wild-type phenotype. We show that loss by mutation of Ax21 leads to reduced motility, reduced biofilm formation, reduced tolerance to the antibiotic tobramycin and reduced virulence to larvae of Galleria mellonella, as well as alteration in the expression of specific genes associated with virulence or antibiotic resistance. Addition of the Ax21protein restored motility and the level of gene expression towards wild type. These findings are consistent with the notion that the Ax21 protein is involved in intraspecies communication, although other interpretations cannot be discounted.
Collapse
|
10
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
11
|
Park HJ, Park CJ, Bae N, Han SW. Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis. THE PLANT PATHOLOGY JOURNAL 2016; 32:266-272. [PMID: 27298602 PMCID: PMC4892823 DOI: 10.5423/ppj.nt.12.2015.0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 05/31/2023]
Abstract
A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Chang-Jin Park
- Department of Plant Biotechnology and Plant Engineering Research Institute, Sejong University, Seoul 05006,
Korea
| | - Nahee Bae
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
12
|
Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R, Van Driessche G, Vitse J, Raemdonck K, Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:298. [PMID: 25926824 PMCID: PMC4396451 DOI: 10.3389/fmicb.2015.00298] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the β-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-β-lactamase and L2 serine-β-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the β-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.
Collapse
Affiliation(s)
- Simon Devos
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Laurence Van Oudenhove
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Stephan Stremersch
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Wouter Van Putte
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Inflammation Research Center, Ghent University Ghent, Belgium ; Inflammation Research Center, Flemish Institute for Biotechnology (VIB) Ghent, Belgium
| | - Gonzalez Van Driessche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jolien Vitse
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|