1
|
Munir S, Ahmed A, Li Y, He P, Singh BK, He P, Li X, Asad S, Wu Y, He Y. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit Rev Biotechnol 2021; 42:634-649. [PMID: 34325576 DOI: 10.1080/07388551.2021.1942780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith South, Australia
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| |
Collapse
|
2
|
Kurokawa M, Nakano M, Kitahata N, Kuchitsu K, Furuya T. An efficient direct screening system for microorganisms that activate plant immune responses based on plant-microbe interactions using cultured plant cells. Sci Rep 2021; 11:7396. [PMID: 33795728 PMCID: PMC8016971 DOI: 10.1038/s41598-021-86560-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Microorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant-microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell-cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.
Collapse
Affiliation(s)
- Mari Kurokawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masataka Nakano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nobutaka Kitahata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
4
|
Flores-Félix JD, Menéndez E, Ramírez-Bahena MH, Peix A, García-Fraile P, Velázquez E. Agrobacterium cavarae sp. nov., isolated from maize ( Zea mays L.) roots. Int J Syst Evol Microbiol 2020; 70:5512-5519. [PMID: 32910749 DOI: 10.1099/ijsem.0.004441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).
Collapse
Affiliation(s)
- José David Flores-Félix
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), University of Évora, Évora, Portugal
| | | | - Alvaro Peix
- Unidad Asociada Grupo de Interacción planta-microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.,Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción planta-microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.,Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Wang D, Sun T, Zhao S, Pan L, Liu H, Tian X. Physiological change alters endophytic bacterial community in clubroot of tumorous stem mustard infected by Plasmodiophora brassicae. BMC Microbiol 2020; 20:244. [PMID: 32762653 PMCID: PMC7412676 DOI: 10.1186/s12866-020-01930-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endophytic bacteria are considered as symbionts living within plants and are influenced by abiotic and biotic environments. Pathogen cause biotic stress, which may change physiology of plants and may affect the endophytic bacterial communiy. Here, we reveal how endophytic bacteria in tumorous stem mustard (Brassica juncea var. tumida) are affected by plant physiological changes caused by Plasmodiophora brassicae using 16S rRNA high-throughput sequencing. RESULTS The results showed that Proteobacteria was the dominant group in both healthy roots and clubroots, but their abundance differed. At the genus level, Pseudomonas was dominant in clubroots, whereas Rhodanobacter was the dominant in healthy roots. Hierarchical clustering, UniFrac-weighted principal component analysis (PCA), non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) indicated significant differences between the endophytic bacterial communities in healthy roots and clubroots. The physiological properties including soluble sugar, soluble protein, methanol, peroxidase (POD) and superoxide dismutase (SOD) significantly differed between healthy roots and clubroots. The distance-based redundancy analysis (db-RDA) and two-factor correlation network showed that soluble sugar, soluble protein and methanol were strongly related to the endophytic bacterial community in clubroots, whereas POD and SOD correlated with the endophytic bacterial community in healthy roots. CONCLUSIONS Our results illustrate that physiologcial changes caused by P. brassicae infection may alter the endophytic bacterial community in clubroots of tumorous stem mustard.
Collapse
Affiliation(s)
| | - Tingting Sun
- Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Songyu Zhao
- Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Limei Pan
- Yangtze Normal University, Fuling, Chongqing, China
| | - Hongfang Liu
- Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xueliang Tian
- Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Syst Appl Microbiol 2018; 41:629-640. [DOI: 10.1016/j.syapm.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
|
7
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
8
|
Shen Z, Mustapha A, Lin M, Zheng G. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. Int J Food Microbiol 2017; 250:37-44. [DOI: 10.1016/j.ijfoodmicro.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
|
9
|
Ling X, Erika U, Kazuhiko N. A endophytic fungus, Ramichloridium cerophilum, promotes growth of a non-mycorrhizal plant, Chinese cabbage. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|