1
|
Qi JY, Yao XB, Lu J, He LX, Cao JL, Kan ZR, Wang X, Pan SG, Tang XR. A 40 % paddy surface soil organic carbon increase after 5-year no-tillage is linked with shifts in soil bacterial composition and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160206. [PMID: 36400297 DOI: 10.1016/j.scitotenv.2022.160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soil organic carbon (SOC) is related to soil fertility, crop yield, and climate change mitigation. Paddy soil is a significant carbon (C) sink, but its C sequestration potential has not been realized as the various driving factors are still not fully understood. We performed a 5-year paddy field experiment in southern China to estimate tillage effects on SOC accumulation and its relation with soil bacteria. The C input from rice residue, SOC content, CO2 flux, soil bacterial community composition, and predicted functions were analyzed. No-tillage (NT) increased (p < 0.05) rice residue C inputs (by 12.6 %-15.9 %), SOC (by 40 % at the surface soil layer compared with conventional tillage, CT), and CO2 fluxes compared with reduced tillage (RT) and CT. Also, NT significantly altered the soil bacterial community. The random forest model showed that the predicted bacterial functions of "Degradation/Utilization/Assimilation Other", "C1 Compound Assimilation", and "Amin and Polyamine Degradation" were the most important functions associated with SOC accumulation. Analysis of metabolic pathway differences indicated that NT significantly decreased the BENZCOA-PWY (anaerobic aromatic compound degradation) and the AST-PWY (L-arginine degradation II). Therefore, the rapid paddy SOC increase is associated with both residue C input (from higher rice yields) and the degradation functions regulated by soil bacteria.
Collapse
Affiliation(s)
- Jian-Ying Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xiang-Bin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Long-Xin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Jun-Li Cao
- Shanxi Center for Testing of Functional Agro⁃Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zheng-Rong Kan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sheng-Gang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xiang-Ru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhu R, Liu C, Xu YD, He W, Liu J, Chen J, An Y, Shi S. Ratio of carbon and nitrogen in fertilizer treatment drives distinct rhizosphere microbial community composition and co-occurrence networks. Front Microbiol 2022; 13:968551. [PMID: 36160210 PMCID: PMC9493311 DOI: 10.3389/fmicb.2022.968551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Fertilization is the main strategy to accelerate vegetation restoration and improve the rhizosphere microbial community in the northeast China. However, the responses of rhizosphere microbial community structure, specific microbial community and symbiotic pattern to manure fertilization in grassland (alfalfa only) are not well clear. In this study, the variation of bacterial community structures in R_Manure (extracted liquid of fermented cow manure), E_Manure (extracted residue of fermented cow manure), F_Manure (full fermented cow manure), and Control (without fermented cow manure) collected from the rhizosphere microbial community of alfalfa were analyzed by the application of an Illumina HiSeq high-throughput sequencing technique. A total of 62,862 microbial operational taxonomic units (OTUs) were detected and derived from 21 phyla of known bacteria. The dominant bacteria in the rhizosphere include Proteobacteria (70.20%), Acidobacteria (1.24%), Actinobacteria (2.11%), Bacteroidetes (6.15%), Firmicutes (4.21%), and Chlorofexi (2.13%) accounting for 86% of the dominant phyla in all treatments. At the genus level, the dominant genus include NB1-j, Lysobacter, Alphaproteobacteria, Subgroup_6, Actinomarinales, Saccharimonadales, Aneurinibacillus, MO-CFX2, SBR1031, Caldilineaceae, and so on with the average relative abundance (RA) of 1.76%, 1.52%, 1.30%, 1.24%, 1.61%, 2.39%, 1.36%, 1.42%, 1.27%, and 1.03%, respectively. Bacterial diversities and community structures were significantly differentiated by different treatments of fertilization. The results of community structure composition showed that R_Manure treatment significantly increased the population abundance of Firmicutes, Chlorofexi, and Patescibacteria by 34.32%, 6.85%, and 2.70%, and decreased the population abundance of Proteobacteria and Actinobacteria by 16.83% and 1.04%, respectively. In addition, it showed that all treatments significantly resulted in an increase or decrease at the genus level. R_Manure had the higher richness and diversity of the bacterial community, with the greatest topology attributes of the co-occurrence networks. Through the analysis of the molecular ecological network (MENA), the co-occurrence networks had a shorter average path distance and diameter in R_Manure than in others, implying more stability to environmental changes. Redundancy analysis (RDA) showed that the ratio of carbon and nitrogen (C/N) was the main factor affecting rhizosphere microbial community composition while driving distinct rhizosphere bacterial community and its co-occurrence networks. The R_Manure associated with more C/N had relatively complex microbial co-occurrence network with a large number of nodes and edges, while the microbial network of others associated with less C/N had fewer taxa with loose mutual interactions. These results suggested that organic fertilizer with high C/N can regulate the rhizosphere microorganism, while high C/N can determine bacterial community structures, specific bacterial taxa, and their relationships with the nodule size of alfalfa. These significant changes can be used to evaluate soil fertility and fertilizer management in the artificial grassland system, while the potential biological indicators of the rhizosphere microbial community will play an important role in future eco-agriculture.
Collapse
Affiliation(s)
- Ruifen Zhu
- Pratacultural College, Gansu Agricultural University, Lanzhou, China
- Pratacultural Institute, Chongqing Academy of Animal Sciences, Rongchang, China
- Pratacultural Institute Science, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chang Liu
- Pratacultural Institute, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yuan Dong Xu
- Pratacultural Institute, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Wei He
- Pratacultural Institute, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Jielin Liu
- Pratacultural Institute Science, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jishan Chen
- Pratacultural Institute, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yajun An
- Gansu Yasheng Agricultural Research Institute Co., Ltd., Lanzhou, China
| | - Shangli Shi
- Pratacultural College, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shangli Shi
| |
Collapse
|
3
|
Bacterial Diversity and Potential Functions in Response to Long-Term Nitrogen Fertilizer on the Semiarid Loess Plateau. Microorganisms 2022; 10:microorganisms10081579. [PMID: 36013997 PMCID: PMC9412673 DOI: 10.3390/microorganisms10081579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial diversity and its functions are essential to soil health. N fertilization changes bacterial communities and interferes with the soil biogeochemical N cycle. In this study, bacterial community and soil physicochemical properties were studied in 2018 after applying N fertilizers (0, 52.5, 105, 157.5, and 210 kg N ha−1) for a long (2003–2018) and a short (2003–2004) duration in a wheat field on the Loess Plateau of China. Soil bacteria were determined using 16S rRNA Illumina-MiSeq®, and the prediction function was analyzed through PICRUSt. The study showed that N fertilizer significantly changed the diversity and abundance of bacterial communities. The phyla Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were most abundant, accounting for 74–80% of the bacterial community abundance. The optimum rates of N fertilizer application (N105) maintain soil health by promoting soil microbial diversity and abundance. The bacterial population abundance was higher after short-term N application than after N application for a long duration and lowest with the high N-fertilizer treatment (N210). High N enrichment led to more heterotrophic N-fixing microorganisms (Alphaproteobacteria), in which metabolism and genetic information processing dominated, while cellular processes, genetic information processing, metabolism, and organismal systems were the main functional categories under low N. The phyla Gemmatimonadetes, Actinobacteria, Bacteroidetes, and Chloroflexi were the key bacteria in the co-occurrence network. The genus Saccharimonadales of the superphylum Patescibacteria has a more significant impact under low N treatment. Long-term N fertilization affected the soil pH, NO3-N, and other physicochemical properties, and soil NO3-N was the highest indicator, contributing 81% of the bacterial community function under different N fertilizer treatments.
Collapse
|
4
|
Abstract
Rice paddy soil-associated microbiota participate in biogeochemical processes that underpin rice yield and soil sustainability, yet continental-scale biogeographic patterns of paddy soil microbiota remain elusive. The soil bacteria of four typical Chinese rice-growing regions were characterized and compared to those of nonpaddy soils. The paddy soil bacteria were significantly less diverse, with unique taxonomic and functional composition, and harbored distinct cooccurrence network topology. Both stochastic and deterministic processes shaped soil bacteria assembly, but paddy samples exhibited a stronger deterministic signature than nonpaddy samples. Compared to other environmental factors, climatic factors such as mean monthly precipitation and mean annual temperature described most of the variance in soil bacterial community structure. Cooccurrence network analysis suggests that the continental biogeographic variance in bacterial community structure was described by the competition between two mutually exclusive bacterial modules in the community. Keystone taxa identified in network models (Anaerolineales, Ignavibacteriae, and Deltaproteobacteria) were more sensitive to changes in environmental factors, leading us to conclude that environmental factors may influence paddy soil bacterial communities via these keystone taxa. Characterizing the uniqueness of bacterial community patterns in paddy soil (compared to nonpaddy soils) at continental scales is central to improving crop productivity and resilience and to sustaining agricultural soils. IMPORTANCE Rice fields provide food for over half of the world’s human population. The ecology of paddy soil microbiomes is shaped by human activities, which can have a profound impact on rice yield, greenhouse gas emissions, and soil health. Investigations of the soil bacteria in four typical Chinese rice-growing regions showed that (i) soil bacterial communities maintain highly modularized species-to-species network structures; (ii) community patterns were shaped by the balance of integrated stochastic and deterministic processes, in which homogenizing selection and dispersal limitation dominate; and (iii) deterministic processes and climatic and edaphic factors influence community patterns mainly by their impact on highly connected nodes (i.e., keystone taxa) in networks. Characterizing the unique ecology of bacterial community patterns in paddy soil at a continental scale may lead to improved crop productivity and resilience, as well as sustaining agricultural soils.
Collapse
|
5
|
Kunda P, Mukherjee A, Dhal PK. Insights into endophytic bacterial diversity of rice grown across the different agro-ecological regions of West Bengal, India. World J Microbiol Biotechnol 2021; 37:184. [PMID: 34580777 DOI: 10.1007/s11274-021-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Endophytes have recently garnered importance worldwide and multiple studies are being conducted to understand their important role and mechanism of interaction inside plants. But before we indulge in their functions it is necessary to dig into the microbiome. This will help to get a complete picture of the microbes intrinsic to their host and understand changes in community composition with respect to their habitats. To fulfil this requirement in our study we have attempted to dissect the endophytic diversity in roots of rice plant grown across the various agro-ecological zones of West Bengal by undergoing amplicon analysis of their 16S rRNA gene. Based on the measured environmental parameters agro-ecological zones can be divided into two groups: nutrient dense groups, representing zones like Gangetic, Northern hill and Terai-Teesta zone characterised by soil with higher levels of nitrogen (N) and total organic carbon and nutrient low groups representing Coastal saline, Red-laterite and Vindhyan zone mainly characterised by high electroconductivity and pH. Gammaproteobacteria, Alphaproteobacteria, Bacilli and Bacteroidetes were mostly abundant in nutrient dense sites whereas Clostridia and Planctomycetes were concentrated in nutrient low sites. Few genera (Aeromonas, Sulfurospirillum, Uliginosibacterium and Acidaminococcus) are present in samples cultivated in all the zones representing the core microbiome of rice in West Bengal, while some other genera like Lactococcus, Dickeya, Azonexus and Pectobacterium are unique to specific zone. Hence it can be concluded that this study has provided some insight in to the endophytic status of rice grown across the state of West Bengal.
Collapse
Affiliation(s)
- Pranamita Kunda
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Giridih, Jharkhand, India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Giridih, Jharkhand, India
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India.
| |
Collapse
|
6
|
Lee SA, Kim JM, Kim Y, Joa JH, Kang SS, Ahn JH, Kim M, Song J, Weon HY. Different types of agricultural land use drive distinct soil bacterial communities. Sci Rep 2020; 10:17418. [PMID: 33060673 PMCID: PMC7562711 DOI: 10.1038/s41598-020-74193-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/20/2020] [Indexed: 01/11/2023] Open
Abstract
Biogeographic patterns in soil bacterial communities and their responses to environmental variables are well established, yet little is known about how different types of agricultural land use affect bacterial communities at large spatial scales. We report the variation in bacterial community structures in greenhouse, orchard, paddy, and upland soils collected from 853 sites across the Republic of Korea using 16S rRNA gene pyrosequencing analysis. Bacterial diversities and community structures were significantly differentiated by agricultural land-use types. Paddy soils, which are intentionally flooded for several months during rice cultivation, had the highest bacterial richness and diversity, with low community variation. Soil chemical properties were dependent on agricultural management practices and correlated with variation in bacterial communities in different types of agricultural land use, while the effects of spatial components were little. Firmicutes, Chloroflexi, and Acidobacteria were enriched in greenhouse, paddy, and orchard soils, respectively. Members of these bacterial phyla are indicator taxa that are relatively abundant in specific agricultural land-use types. A relatively large number of taxa were associated with the microbial network of paddy soils with multiple modules, while the microbial network of orchard and upland soils had fewer taxa with close mutual interactions. These results suggest that anthropogenic agricultural management can create soil disturbances that determine bacterial community structures, specific bacterial taxa, and their relationships with soil chemical parameters. These quantitative changes can be used as potential biological indicators for monitoring the impact of agricultural management on the soil environment.
Collapse
Affiliation(s)
- Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Myeong Kim
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jae-Ho Joa
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju, Republic of Korea
| | - Seong-Soo Kang
- Soil and Fertilization Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jae-Hyung Ahn
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Mincheol Kim
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea.
| |
Collapse
|
7
|
Tang H, Li C, Xiao X, Shi L, Cheng K, Wen L, Li W. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China. Sci Rep 2020; 10:13540. [PMID: 32782287 PMCID: PMC7419555 DOI: 10.1038/s41598-020-70612-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/31/2020] [Indexed: 11/08/2022] Open
Abstract
The soil physicochemical properties and soil microbial communities were affected by different fertilizer management. Fertilizer regime were closely relative to the soil texture and nutrient status in a double-cropping paddy field of southern China. However, there was limited information about the influence of different manure nitrogen (N) input on soil microbial communities in a double-cropping rice (Oryza sativa L.) field. Therefore, the short-term different manure N input rate management on soil bacterial and fungal diversity in a double-cropping paddy field of southern China were studied by using Illumina sequencing and quantitative real-time polymerase chain reaction technology in the present paper. The filed experiment were including 100% N of chemical fertilizer (M0), 30% N of organic manure and 70% N of chemical fertilizer (M30), 50% N of organic manure and 50% N of chemical fertilizer (M50), 100% N of organic manure (M100), and without N fertilizer input as control (CK). The results showed that diversity indices of soil microbial communities with application of organic manure and chemical N fertilizer treatments were higher than that of CK treatment. Application of organic manure and chemical N fertilizer management increase soil bacterial abundance of the phylum Actinobacteria, Proteobacteria and Gammaproteobacteria, and soil fungi abundance of the phylum Basidiomycota and Zygomycota were also increased. Compared with CK treatment, the value of Richness, Shannon and McIntosh indices, and taxonomic diversity were increased with M30, M50 and M100 treatments. This finding demonstrated that M30, M50 and M100 treatments modify soil bacterial and fungal diversity. Therefore, the combined application of organic manure and chemical fertilizer N management could significantly increase the abundance of profitable functional bacteria and fungi species in a double-cropping rice field of southern China.
Collapse
Affiliation(s)
- Haiming Tang
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China.
| | - Chao Li
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| | - Xiaoping Xiao
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| | - Lihong Shi
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| | - Kaikai Cheng
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| | - Li Wen
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| | - Weiyan Li
- Hunan Soil and Fertilizer Institute, Changsha, 410125, People's Republic of China
| |
Collapse
|
8
|
Xue WL, Pan W, Lu Q, Xu QR, Wu CN, Du ST. Aquatic plant debris changes sediment enzymatic activity and microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21801-21810. [PMID: 29796882 DOI: 10.1007/s11356-018-2310-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The retention of aquatic plant debris in freshwater systems favors a reduction in soluble reactive phosphorus (P) in overlying water through microbe-mediated mechanisms in sediment. For a more complete view of the changes in sediment microbial structure and functioning when receiving plant debris, the enzyme activities and microbial community structure in sediments incubated with or without plant debris were investigated. Significantly higher fluorescein diacetate (FDA) hydrolysis, alkaline phosphatase, polyphenol oxidase, cellulase, β-glucosidase, and dehydrogenase activities were observed with plant debris treatment. High-throughput pyrosequencing showed that the number of total operational taxonomic units (OTUs) of bacteria estimated by using the Chao1 analysis was 2064 (in the control) and 1821 (with the plant debris treatment). The Shannon index, functional organization, and Venn diagrams revealed that the enriched OTUs in plant debris-treated community were less diversified than those in the control sample. The prominent bacterial phyla Firmicutes and Bacteroidetes were more diverse after plant debris addition. At the class level, the relative abundance of Alphaproteobacteria increased by 114% when plant debris was added, whereas the relative abundances of Beta-, Delta-, and Gammaproteobacteria decreased by 42, 78, and 86%, respectively. Azospirillum and Dechloromonas, the dominant phylogenetic groups at the genus level, increased with plant debris addition. Our study showed the importance of the above microbial genera in plant debris-mediated P retention in sediment.
Collapse
Affiliation(s)
- Wan-Lei Xue
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wei Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qian-Ru Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Cai-Nan Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shao-Ting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Tipayno SC, Truu J, Samaddar S, Truu M, Preem J, Oopkaup K, Espenberg M, Chatterjee P, Kang Y, Kim K, Sa T. The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecol Evol 2018; 8:6157-6168. [PMID: 29988438 PMCID: PMC6024150 DOI: 10.1002/ece3.4170] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The pollution of agricultural soils by the heavy metals affects the productivity of the land and has an impact on the quality of the surrounding ecosystems. This study investigated the bacterial community structure in the heavy metal contaminated sites along a smelter and a distantly located paddy field to elucidate the factors that are related to the alterations of the bacterial communities under the conditions of heavy metal pollution. Among the study sites, the bacterial communities in the soil did not show any significant differences in their richness and diversity. The soil bacterial communities at the three study sites were distinct from one another at each site, possessing a distinct set of bacterial phylotypes. Among the study sites, significant changes were observed in the abundances of the bacterial phyla and genera. The variations in the bacterial community structure were mostly related to the general soil properties at the phylum level, while at the finer taxonomic levels, the concentrations of arsenic (As) and lead (Pb) were the significant factors, affecting the community structure. The relative abundances of the genera Desulfatibacillum and Desulfovirga were negatively correlated to the concentrations of As, Pb, and cadmium (Cd) in the soil, while the genus Bacillus was positively correlated to the concentrations of As and Cd. According to the results of the prediction of bacterial community functions, the soil bacterial communities of the heavy metal polluted sites were characterized by the more abundant enzymes involved in DNA replication and repair, translation, transcription, and the nucleotide metabolism pathways, while the amino acid and lipid metabolism, as well as the biodegradation potential of xenobiotics, were reduced. Our results showed that the adaptation of the bacterial communities to the heavy metal contamination was predominantly attributed to the replacement process, while the changes in community richness were linked to the variations in the soil pH values.
Collapse
Affiliation(s)
- Sherlyn C. Tipayno
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
- Present address:
Department of BiologyBenguet State UniversityLa TrinidadPhilippines
| | - Jaak Truu
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Sandipan Samaddar
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
| | - Marika Truu
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Jens‐Konrad Preem
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Kristjan Oopkaup
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mikk Espenberg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Poulami Chatterjee
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
| | - Yeongyeong Kang
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
| | - Kiyoon Kim
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
| | - Tongmin Sa
- Department of Environmental and Biological ChemistryChungbuk National UniversityCheongjuKorea
| |
Collapse
|