1
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res 2022; 207:105401. [DOI: 10.1016/j.antiviral.2022.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
3
|
Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. NPJ Vaccines 2022; 7:38. [PMID: 35301331 PMCID: PMC8931169 DOI: 10.1038/s41541-022-00456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Oropouche virus (OROV) is an arthropod-borne orthobunyavirus found in South America and causes Oropouche fever, a febrile infection similar to dengue. It is the second most prevalent arthropod-borne viral disease in South America after dengue. Over 500,000 cases have been diagnosed since the virus was first discovered in 1955; however, this is likely a significant underestimate given the limited availability of diagnostics. No fatalities have been reported to date, however, up to 60% of cases have a recurrent phase of disease within one month of recovery from the primary disease course. The main arthropod vector is the biting midge Culicoides paraensis, which has a geographic range as far north as the United States and demonstrates the potential for OROV to geographically expand. The transmission cycle is incompletely understood and vertebrate hosts include both non-human primates and birds further supporting the potential ability of the virus to spread. A number of candidate antivirals have been evaluated against OROV in vitro but none showed antiviral activity. Surprisingly, there is only one report in the literature on candidate vaccines. We suggest that OROV is an undervalued pathogen much like chikungunya, Schmallenberg, and Zika viruses were before they emerged. Overall, OROV is an important emerging disease that has been under-investigated and has the potential to cause large epidemics in the future. Further research, in particular candidate vaccines, is needed for this important pathogen.
Collapse
|
4
|
García-Serradilla M, Risco C. Light and electron microscopy imaging unveils new aspects of the antiviral capacity of silver nanoparticles in bunyavirus-infected cells. Virus Res 2021; 302:198444. [PMID: 33961898 DOI: 10.1016/j.virusres.2021.198444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Drug repurposing is an important source of new antivirals because many compounds used to treat a variety of pathologies also hamper viral infections. Habitually, silver nanoparticles (AgNPs) have been used to treat bacterial and fungal infections and their antiviral properties have been also reported. In this work, we have studied the antiviral capacity of AgNPs in cells infected with Bunyamwera virus (BUNV), the prototype of the Bunyavirales order. This group of viruses contains important pathogens for humans, animals and plants. Incubation of BUNV-infected Vero cells with non-toxic concentrations of AgNPs, reduced the production of extracellular infectious viruses in up to three orders of magnitude. With a combination of imaging techniques, we have visualized the intracellular distribution of AgNPs in mock- and BUNV-infected cells and studied their effects on intracellular organelles. In mock-infected cells and at short times post-incubation, AgNPs were detected inside nuclei and mitochondria by transmission electron microscopy (TEM). At long times post-treatment, they accumulated inside lysosome-like organelles. Cell compartments did not exhibit any appreciable ultrastructural alterations after incubation with AgNPs. In BUNV-infected cells, AgNPs attached to extracellular virions, that showed a disrupted morphology. Inside cells, they were detected inside the nucleus, in mitochondria and around characteristic Golgi-associated, single-membrane spherules. These membranous structures are the replication organelles (ROs) of bunyaviruses and contain active viral replication complexes (VRCs). Compared to normal spherules that are round, compact and have an electron-dense core, spherules in AgNPs-treated cells were deformed and their core was electron-lucent. Interestingly, in BUNV-infected cells treated with the typical antiviral ribavirin (RBV), spherules with VRCs exhibit also an anomalous morphology and an electron-lucent core. Both AgNPs and RBV might interfere with BUNV-induced dismantling of cell nucleoli and with the intercellular propagation of large groups of virions, a mechanism of BUNV transmission observed for the first time in cultured cells. Our results point to silver nanoparticles as good candidates for antiviral therapy, either alone or in combination with other antiviral drugs, such as RBV-related compounds.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Vergote V, Laenen L, Mols R, Augustijns P, Van Ranst M, Maes P. Chloroquine, an Anti-Malaria Drug as Effective Prevention for Hantavirus Infections. Front Cell Infect Microbiol 2021; 11:580532. [PMID: 33791230 PMCID: PMC8006394 DOI: 10.3389/fcimb.2021.580532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/15/2021] [Indexed: 01/14/2023] Open
Abstract
We investigated whether chloroquine can prevent hantavirus infection and disease in vitro and in vivo, using the Hantaan virus newborn C57BL/6 mice model and the Syrian hamster model for Andes virus. In vitro antiviral experiments were performed using Vero E6 cells, and Old World and New World hantavirus species. Hantavirus RNA was detected using quantitative RT-PCR. For all hantavirus species tested, results indicate that the IC50 of chloroquine (mean 10.2 ± 1.43 μM) is significantly lower than the CC50 (mean 260 ± 2.52 μM) yielding an overall selectivity index of 25.5. We also investigated the potential of chloroquine to prevent death in newborn mice after Hantaan virus infection and its antiviral effect in the hantavirus Syrian hamster model. For this purpose, C57Bl/6 mother mice were treated subcutaneously with daily doses of chloroquine. Subsequently, 1-day-old suckling mice were inoculated intracerebrally with 5 x 102 Hantaan virus particles. In litters of untreated mothers, none of the pups survived challenge. The highest survival rate (72.7% of pups) was found when mother mice were administered a concentration of 10 mg/kg chloroquine. Survival rates declined in a dose-dependent manner, with 47.6% survival when treated with 5 mg/kg chloroquine, and 4.2% when treated with 1 mg/kg chloroquine. Assessing the antiviral therapeutic and prophylactic effect of chloroquine in the Syrian hamster model was done using two different administration routes (intraperitoneally and subcutaneously using an osmotic pump system). Evaluating the prophylactic effect, a delay in onset of disease was noted and for the osmotic pump, 60% survival was observed. Our results show that chloroquine can be highly effective against Hantaan virus infection in newborn mice and against Andes virus in Syrian hamsters.
Collapse
Affiliation(s)
- Valentijn Vergote
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lies Laenen
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Raf Mols
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Kamel M, Pavulraj S, Fauler B, Mielke T, Azab W. Equid Herpesvirus-1 Exploits the Extracellular Matrix of Mononuclear Cells to Ensure Transport to Target Cells. iScience 2020; 23:101615. [PMID: 33015592 PMCID: PMC7521387 DOI: 10.1016/j.isci.2020.101615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mononuclear cells are the first line of defense against microbial infection. Yet, several viruses have evolved different mechanisms to overcome host defenses to ensure their spread. Here, we show unique mechanisms of how equid herpesvirus-1 manipulates peripheral blood mononuclear cells (PBMC) to travel further in the body. (1) "PBMC-hitching": at the initial contact, herpesviruses lurk in the extracellular matrix (ECM) of PBMC without entering the cells. The virus exploits the components of the ECM to bind, transport, and then egress to infect other cells. (2) "Intracellular delivery": transendothelial migration is a physiological mechanism where mononuclear cells can transmigrate through the endothelial cells. The virus was intangible and probably did not interfere with such a mechanism where the infected PBMC can probably deliver the virus inside the endothelium. (3) "Classical-fusion": this process is well mastered by herpesviruses due to a set of envelope glycoproteins that facilitate cell-cell fusion and virus spread.
Collapse
Affiliation(s)
- Mohamed Kamel
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Beatrix Fauler
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
7
|
Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis 2020; 14:e0008637. [PMID: 32790668 PMCID: PMC7447009 DOI: 10.1371/journal.pntd.0008637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/25/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Development of vaccines and therapies against Crimean-Congo hemorrhagic fever virus (CCHFV) have been hindered by the lack of immunocompetent animal models. Recently, a lethal nonhuman primate model based on the CCHFV Hoti strain was reported. CCHFV Hoti caused severe disease in cynomolgus monkeys with 75% lethality when given by the intravenous (i.v.) route. METHODOLOGY/PRINCIPAL FINDINGS In a series of experiments, eleven cynomologus monkeys were exposed i.v. to CCHFV Hoti and four macaques were exposed i.v. to CCHFV Afghanistan. Despite transient viremia and changes in clinical pathology such as leukopenia and thrombocytopenia developing in all 15 animals, all macaques survived to the study endpoint without developing severe disease. CONCLUSIONS/SIGNIFICANCE We were unable to attribute differences in the results of our study versus the previous report to differences in the CCHFV Hoti stock, challenge dose, origin, or age of the macaques. The observed differences are most likely the result of the outbred nature of macaques and low animal numbers often used by necessity and for ethical considerations in BSL-4 studies. Nonetheless, while we were unable to achieve severe disease or lethality, the CCHFV Hoti and Afghanistan macaque models are useful for screening medical countermeasures using biomarkers including viremia and clinical pathology to assess efficacy.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D, Grosveld F, Wernike K, Beer M, Aebischer A, Daramola O, Rodriguez Conde S, Brennan K, Kozub D, Søndergaard Kristiansen M, Mistry KK, Deng Z, Hellert J, Guardado-Calvo P, Rey FA, van Keulen L, Kortekaas J. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 2020; 9:52716. [PMID: 32314955 PMCID: PMC7173960 DOI: 10.7554/elife.52716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.
Collapse
Affiliation(s)
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Michiel Harmsen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Olalekan Daramola
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Sara Rodriguez Conde
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Karen Brennan
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Dorota Kozub
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | | | - Kieran K Mistry
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Ziyan Deng
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Jan Hellert
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
9
|
Takayama-Ito M, Saijo M. Antiviral Drugs Against Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2020; 11:150. [PMID: 32117168 PMCID: PMC7026129 DOI: 10.3389/fmicb.2020.00150] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by SFTS virus (SFTSV), which is a novel bunyavirus. SFTSV was first isolated from patients who presented with fever, thrombocytopenia, leukocytopenia, and multiorgan dysfunction in China. Subsequently, it was found to be widely distributed in Southeast Asia (Korea, Japan, and Vietnam). SFTSV can be transmitted not only from ticks but also from domestic animals, companion animals, and humans. Because the case fatality rate of SFTS is high (6–30%), development of specific and effective treatment for SFTS is required. Studies of potential antiviral drugs for SFTS-specific therapy have been conducted on existing or newly discovered agents in vitro and in vivo, with ribavirin and favipiravir being the most promising candidates. While animal experiments and retrospective studies have demonstrated the limited efficacy of ribavirin, it was also speculated that ribavirin would be effective in patients with a viral load <1 × 106 copies/mL. Favipiravir showed higher efficacy than ribavirin against SFTSV in in vitro assays and greater efficacy in animal models, even administrated 3 days after the virus inoculation. Although clinical trials evaluating the efficacy of favipiravir in SFTS patients in Japan are underway, this has yet to be confirmed. Other drugs, including hexachlorophene, calcium channel blockers, 2′-fluoro-2′-deoxycytidine, caffeic acid, amodiaquine, and interferons, have also been evaluated for their inhibitory efficacy against SFTSV. Among them, calcium channel blockers are promising because in addition to their efficacy in vitro and in vivo, retrospective clinical data have indicated that nifedipine, one of the calcium channel blockers, reduced the case fatality rate by >5-fold. Although further research is necessary to develop SFTS-specific therapy, considerable progress has been achieved in this area. Here we summarize and discuss recent advances in antiviral drugs against SFTSV.
Collapse
Affiliation(s)
- Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
High Prevalence of a Newly Discovered Wutai Mosquito Phasivirus in Mosquitoes from Rio de Janeiro, Brazil. INSECTS 2019; 10:insects10050135. [PMID: 31067759 PMCID: PMC6587333 DOI: 10.3390/insects10050135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022]
Abstract
Many RNA viruses have recently emerged, threatening humans and causing harm to animals and plants. Bunyaviruses represent one of the largest groups of RNA viruses and are able to infect a wide range of hosts (invertebrates, vertebrates, and plants). Recently, new insect-specific viruses have been isolated from mosquitoes and phlebotomine sandflies worldwide. Little is known regarding the impact of these viruses on the vector life cycles and the stages of oviposition, breeding, blood feeding, and the mosquito’s lifespan. This study describes, for the first time in South America, the detection and characterization of a recently discovered bunyavirus corresponding to the Wutai mosquito phasivirus, confirming its high prevalence in the Culex spp. and Aedes spp. mosquitoes collected in the urban environment of Rio de Janeiro city, Brazil. The knowledge of the mosquito’s insect-specific virus infection can improve virus evolution studies and may contribute to the understanding of intrinsic factors that influence vector competence to transmit pathogenic viruses.
Collapse
|
11
|
Kurucz K, Madai M, Bali D, Hederics D, Horváth G, Kemenesi G, Jakab F. Parallel Survey of Two Widespread Renal Syndrome-Causing Zoonoses:Leptospiraspp. andHantavirusin Urban Environment, Hungary. Vector Borne Zoonotic Dis 2018; 18:200-205. [DOI: 10.1089/vbz.2017.2204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Kornélia Kurucz
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Dominika Bali
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Dávid Hederics
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- Department of Ecology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Vergote V, Laenen L, Vanmechelen B, Van Ranst M, Verbeken E, Hooper JW, Maes P. A lethal disease model for New World hantaviruses using immunosuppressed Syrian hamsters. PLoS Negl Trop Dis 2017; 11:e0006042. [PMID: 29077702 PMCID: PMC5678717 DOI: 10.1371/journal.pntd.0006042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/08/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hantavirus, the hemorrhagic causative agent of two clinical diseases, is found worldwide with variation in severity, incidence and mortality. The most lethal hantaviruses are found on the American continent where the most prevalent viruses like Andes virus and Sin Nombre virus are known to cause hantavirus pulmonary syndrome. New World hantavirus infection of immunocompetent hamsters results in an asymptomatic infection except for Andes virus and Maporal virus; the only hantaviruses causing a lethal disease in immunocompetent Syrian hamsters mimicking hantavirus pulmonary syndrome in humans. METHODOLOGY/PRINCIPAL FINDINGS Hamsters, immunosuppressed with dexamethasone and cyclophosphamide, were infected intramuscularly with different New World hantavirus strains (Bayou virus, Black Creek Canal virus, Caño Delgadito virus, Choclo virus, Laguna Negra virus, and Maporal virus). In the present study, we show that immunosuppression of hamsters followed by infection with a New World hantavirus results in an acute disease that precisely mimics both hantavirus disease in humans and Andes virus infection of hamsters. CONCLUSIONS/ SIGNIFICANCE Infected hamsters showed specific clinical signs of disease and moreover, histological analysis of lung tissue showed signs of pulmonary edema and inflammation within alveolar septa. In this study, we were able to infect immunosuppressed hamsters with different New World hantaviruses reaching a lethal outcome with signs of disease mimicking human disease.
Collapse
Affiliation(s)
- Valentijn Vergote
- KU Leuven–University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | - Lies Laenen
- KU Leuven–University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | - Bert Vanmechelen
- KU Leuven–University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven–University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | - Erik Verbeken
- KU Leuven–University of Leuven, Department of Imaging & Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Jay W. Hooper
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Piet Maes
- KU Leuven–University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Zoonotic Infectious Diseases unit, Leuven, Belgium
- * E-mail:
| |
Collapse
|