1
|
Moussa AY, Fayez S, Xiao H, Xu B. New insights into antimicrobial and antibiofilm effects of edible mushrooms. Food Res Int 2022; 162:111982. [DOI: 10.1016/j.foodres.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
2
|
Grace A, Murphy R, Dillon A, Smith D, Cryan SA, Heise A, Fitzgerald-Hughes D. Modified poly(L-lysine)-based structures as novel antimicrobials for diabetic foot infections, an in-vitro study. HRB Open Res 2022; 5:4. [PMID: 36017374 PMCID: PMC9366240 DOI: 10.12688/hrbopenres.13380.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Wound infections occur as sequelae to skin trauma and cause significant hospitalizations, morbidity and mortality. Skin traumas arise more frequently in those with diabetes or cardiovascular disease and in these settings, may be chronic with poorer outcomes including lower limb amputation. Treatment of chronic wound infection is challenging due to antibiotic resistance and biofilm formation by bacteria including
S. aureus and
P. aeruginosa, which are among the most frequent causative pathogens. Managing these challenging infections requires new molecules and modalities.
Methods: We evaluated antimicrobial and anti-biofilm activity of star-shaped poly(L-lysine) (PLL) polymers against
S. aureus and
P. aeruginosa strains and clinical isolates recovered from wounds including diabetic foot wounds (DFW) in a Dublin Hospital in 2019. A star-shaped PLL polypeptide series, specifically G2(8)PLL
20, G3(16)PLL
10, G4(32)PLL
5 with variation in polypeptide chain length and arm-multiplicity, were compared to a linear peptide, PLL
160 with equivalent number of lysine residues.
Results: All PLLs, including the linear polypeptide, were bactericidal at 1μM against
S. aureus 25923 and
P. aeruginosa PAO1, with log reduction in colony forming units/ml between 2.7-3.6. PLL
160 demonstrated similar killing potency against 20
S. aureus and five
P. aeruginosa clinical isolates from DFW, mean log reductions: 3.04 ± 0.16 and 3.96 ± 0.82 respectively after 1 hour incubation. Potent anti-biofilm activity was demonstrated against
S. aureus 25923 but for clinical isolates, low to moderate loss of biofilm viability was shown using PLL
160 and G3(16)PLL
10 at 50 μM (
S. aureus) and 200 μM (
P. aeruginosa) with high inter-isolate variability
. In the star-shaped architecture, antimicrobial activity was retained with incorporation of 5-mer hydrophobic amino-acid modifications to the arms of the polypeptides (series G3(16)PLL
20-coPLT
5, G3(16)PLL
20-coPLI
5, G3(16)PLL
20-coPLP
5).
Conclusion: These polypeptides offer structural flexibility for clinical applications and have potential for further development, particularly in the setting of diabetic foot and other chronic wound infections.
Collapse
Affiliation(s)
- Alicia Grace
- Department of Microbiology,, Beaumont Hospital, Dublin, D09V2N0, Ireland
- Department of Clinical Microbiology,, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, The Smurfit Building, Beaumont Hospital, Dublin, D09 YD60, Ireland
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, D02 YN77, Ireland
| | - Aoife Dillon
- Department of Clinical Microbiology,, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, The Smurfit Building, Beaumont Hospital, Dublin, D09 YD60, Ireland
| | - Diarmuid Smith
- Department of Endocrinology, Diabetes Centre, Beaumont Hospital, Dublin, Ireland, D09 V2N0, Ireland
| | - Sally-Ann Cryan
- SFI Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons (RCSI) University of Medicine and Health Sciences and University of Dublin, Trinity College, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), Royal College of Surgeons in Ireland, University of Medicine and Health Sciences and National University of Ireland, Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, 123 Saint Stephen's Green, Dublin 2, D02 YN77, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, D02 YN77, Ireland
- SFI Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons (RCSI) University of Medicine and Health Sciences and University of Dublin, Trinity College, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), Royal College of Surgeons in Ireland, University of Medicine and Health Sciences and National University of Ireland, Galway, Ireland
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology,, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, The Smurfit Building, Beaumont Hospital, Dublin, D09 YD60, Ireland
| |
Collapse
|
3
|
Anthranilate Acts as a Signal to Modulate Biofilm Formation, Virulence, and Antibiotic Tolerance of Pseudomonas aeruginosa and Surrounding Bacteria. Microbiol Spectr 2022; 10:e0146321. [PMID: 35019684 PMCID: PMC8754147 DOI: 10.1128/spectrum.01463-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anthranilate is a diffusible molecule produced by Pseudomonas aeruginosa and accumulates as P. aeruginosa grows. Anthranilate is an important intermediate for the synthesis of tryptophan and the Pseudomonas quinolone signal (PQS), as well as metabolized by the anthranilate dioxygenase complex (antABC operon products). Here we demonstrate that anthranilate is a key factor that modulates the pathogenicity-related phenotypes of P. aeruginosa and other surrounding bacteria in the environment, such as biofilm formation, antibiotic tolerance, and virulence. We found that the anthranilate levels in P. aeruginosa cultures rapidly increased in the stationary phase and then decreased again, forming an anthranilate peak. Biofilm formation, antibiotic susceptibility, and virulence of P. aeruginosa were significantly altered before and after this anthranilate peak. In addition, these phenotypes were all modified by the mutation of antABC and exogenous addition of anthranilate. Anthranilate also increased the antibiotic susceptibility of other species of bacteria, such as Escherichia coli, Salmonella enterica, Bacillus subtilis, and Staphylococcus aureus. Before the anthranilate peak, the low intracellular anthranilate level was maintained through degradation from the antABC function, in which induction of antABC was also limited to a small extent. The premature degradation of anthranilate, due to its high levels, and antABC expression early in the growth phase, appears to be toxic to the cells. From these results, we propose that by generating an anthranilate peak as a signal, P. aeruginosa may induce some sort of physiological change in surrounding cells. IMPORTANCE Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an "anthranilate peak". This peak acts as a signal that induces physiological changes in surrounding cells, decreasing their antibiotic tolerance and biofilm formation. This study is important in that it provides a new insight into how microbial signaling substances can induce changes in the pathogenicity-related phenotypes of cells in the environment. In addition, this study shows that anthranilate can be used as an adjuvant to antibiotics.
Collapse
|
4
|
Antipathogenic Compounds That Are Effective at Very Low Concentrations and Have Both Antibiofilm and Antivirulence Effects against Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0024921. [PMID: 34494853 PMCID: PMC8557914 DOI: 10.1128/spectrum.00249-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa, a human pathogen, causes both acute and chronic infections that are mediated by virulence factor production and biofilm formation. Since both characteristics of P. aeruginosa are regulated by quorum sensing (QS), we screened 126 synthetic chemicals for anti-QS activity and finally selected the compounds that have both antivirulence and antibiofilm activities. To efficiently screen the chemical library, the following reporter-based bioassay systems were used: the QS- or biofilm-specific promoter-lacZ fusions (lasIp- or PA1897p-lacZ for the QS activity and cdrAp-lacZ for measuring the intracellular c-di-GMP levels). We also measured the production of virulence factors and biofilm formation in P. aeruginosa. A small-animal infection model using mealworms was also used for virulence analysis. From this screening, MHY1383 and MHY1387 were found to have both antivirulence and antibiofilm activities in P. aeruginosa. Most importantly, MHY1383 and MHY1387 exhibited these activities at very low concentrations, showing a significant anti-QS effect at 100 pM and an antibiofilm effect at 1 to 10 pM. By treating P. aeruginosa with these compounds, the virulence factor production and biofilm formation of P. aeruginosa were significantly reduced. These compounds can be developed as promising antipathogenic and antibiofilm drugs that can be applied in situations where such compounds must be used in an extremely low concentration. Our findings also offer a significant advantage for developing therapeutic agents with few adverse side effects. IMPORTANCE Many antibiotics are increasingly losing their efficacy due to antibiotic resistance mediated by biofilm formation. In this study, we screened a synthetic chemical library and discovered several compounds that have both antivirulence and antibiofilm effects against Pseudomonas aeruginosa, a notorious human pathogen. Two of them had these effects at extremely low concentrations and are expected not to develop resistance, unlike conventional antibiotics, because they have no effect on the growth of bacteria. Our results strongly suggest that these compounds act on the target in a noncompetitive manner, indicating that they are distinct from other previously known quorum sensing inhibitors or biofilm inhibitors. Our findings offer a significant advantage for developing therapeutic agents with few adverse side effects.
Collapse
|
5
|
Turri A, Čirgić E, Shah FA, Hoffman M, Omar O, Dahlin C, Trobos M. Early plaque formation on PTFE membranes with expanded or dense surface structures applied in the oral cavity of human volunteers. Clin Exp Dent Res 2020; 7:137-146. [PMID: 33169543 PMCID: PMC8019762 DOI: 10.1002/cre2.344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives This clinical randomized study aimed to evaluate the early plaque formation on nonresorbable polytetrafluoroethylene (PTFE) membranes having either a dense (d‐PTFE) or an expanded (e‐PTFE) microstructure and exposed to the oral cavity. Material and Methods Twelve individuals were enrolled in this study. In a split‐mouth design, five test membranes (e‐PTFE) with a dual‐layer configuration and five control membranes (d‐PTFE) were bonded on the buccal surfaces of posterior teeth of each subject. All study subjects refrained from toothbrushing during the study period. Specimens were detached from the teeth at 4 and 24 hr and subjected to viability counting, confocal microscopy, and scanning electron microscopy. Plaque samples were harvested from neighboring teeth at baseline, 4, and 24 hr, as control. Wilcoxon signed rank test was applied. Results No bond failure of the membranes was reported. Between the early and late time points, viable bacterial counts increased on all membranes, with no difference between the test and control. The number of Staphylococcus spp. decreased on the tooth surfaces and increased on both membranes overtime, with a significant difference compared to teeth. The total biomass and average biofilm thickness of live and dead cells were significantly greater at the d‐PTFE barriers after 4 hr. Conclusion This study demonstrated that the e‐PTFE membrane was associated with a lesser degree of biofilm accumulation during the initial exposure compared to the d‐PTFE membrane. The present experimental setup provides a valuable toolbox to study the in vivo behavior of different membranes used in guided bone regeneration (GBR).
Collapse
Affiliation(s)
- Alberto Turri
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,The Brånemark Clinic, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden
| | - Emina Čirgić
- Department of Orthodontics, University Clinics of Odontology, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden.,Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hoffman
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Vice Deanship for Postgraduate Studies and Scientific Research, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral, Maxillofacial Surgery and Research and Development, NU-Hospital Organisation, Trollhättan, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Thermoregulation of Pseudomonas aeruginosa Biofilm Formation. Appl Environ Microbiol 2020; 86:AEM.01584-20. [PMID: 32917757 DOI: 10.1128/aem.01584-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of temperature on the biofilm formation of Pseudomonas aeruginosa and revealed that the biofilm formation increased rapidly at temperatures lower than 25°C. P. aeruginosa formed the most robust biofilm of a conspicuous mushroom-like structure at 20°C. However, when the temperature increased to 25°C, the biofilm formation rapidly decreased. Above 25°C, as the temperature rose, the biofilm formation increased again little by little despite its less-structured form, indicating that 25°C is the low point of biofilm formation. The intracellular 3',5'-cyclic diguanylate (c-di-GMP) levels also decreased rapidly as the temperature rose from 20 to 25°C. The expression levels of pelA, algD, and pslA encoding Pel, alginate, and Psl, respectively, were also dramatically affected by temperature, with pelA being regulated in a pattern similar to that of the intracellular c-di-GMP levels, and the pattern seen for algD regulation was the most similar to the actual biofilm formation pattern. Total exopolysaccharide production was thermoregulated and followed the regulation pattern of c-di-GMP. Interestingly, the thermoregulation patterns in biofilm formation were different depending on the strain of P. aeruginosa Unlike PAO1, another strain, PA14, showed a gradual decrease in biofilm formation and c-di-GMP in the range of 20 to 37°C, and P. aeruginosa clinical isolates also showed slightly different patterns in biofilm formation in conjunction with temperature change, suggesting that different strains may sense different temperature ranges for biofilm formation. However, it is obvious that P. aeruginosa forms more biofilms at lower temperatures and that temperature is an important factor in determining the biofilm formation.IMPORTANCE Biofilm formation is an important protection mechanism used by most microorganisms and provides cells with many advantages, like high infectivity, antibiotic resistance, and strong survivability. Since most persistent bacterial infections are believed to be associated with biofilms, biofilm control is an important issue in medicine, environmental engineering, and industry. Biofilm formation is influenced by various environmental factors. Temperature is the most direct environmental cue encountered by microorganisms. Here, we investigated the effect of temperature on the biofilm formation of P. aeruginosa, a notorious pathogen, and found that temperature is an important factor determining the amount and structure of biofilms. Low temperatures greatly increase biofilm formation and give biofilms a highly conspicuous structure. Although thermoregulation of biofilm formation is mainly mediated by c-di-GMP, some c-di-GMP-independent regulations were also observed. This study shows how biofilms are formed at various temperatures and provides new insights to control biofilms using temperature.
Collapse
|
7
|
Abstract
For a long time, antibiotics have been 'magical weapons' to combat pathogenic microbes. The success of antibiotics is now greatly threatened by resistance to antibiotics and many scientists have already talked about the coming of the postantibiotic era. This special issue is prepared to understand recent research findings and new concepts about antibiotic resistance. Above all, this special issue explores mechanisms for the generation, selection, and spread of antibiotic resistance, and gives insight into what to target to prevent the development of antibiotic resistance. Just as antibiotics came from the concept of "magic bullet", a breakthrough will come from a new concept based on a profound understanding of antibiotic resistance.
Collapse
Affiliation(s)
- Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|