1
|
Amacher JF, Antos JM. Sortases: structure, mechanism, and implications for protein engineering. Trends Biochem Sci 2024; 49:596-610. [PMID: 38692993 DOI: 10.1016/j.tibs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
2
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Vogel BA, Blount JM, Kodama HM, Goodwin-Rice NJ, Andaluz DJ, Jackson SN, Antos JM, Amacher JF. A unique binding mode of P1' Leu-containing target sequences for Streptococcus pyogenes sortase A results in alternative cleavage. RSC Chem Biol 2024; 5:30-40. [PMID: 38179192 PMCID: PMC10763551 DOI: 10.1039/d3cb00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024] Open
Abstract
Sortase enzymes are cysteine transpeptidases that attach environmental sensors, toxins, and other proteins to the cell surface in Gram-positive bacteria. The recognition motif for many sortases is the cell wall sorting signal (CWSS), LPXTG, where X = any amino acid. Recent work from ourselves and others has described recognition of additional amino acids at a number of positions in the CWSS, specifically at the Thr (or P1) and Gly (or P1') positions. In addition, although standard cleavage occurs between these two residues (P1/P1'), we previously observed that the SrtA enzyme from Streptococcus pneumoniae will cleave after the P1' position when its identity is a Leu or Phe. The stereochemical basis of this alternative cleavage is not known, although homologs, e.g., SrtA from Listeria monocytogenes or Staphylococcus aureus do not show alternative cleavage to a significant extent. Here, we use protein biochemistry, structural biology, and computational biochemistry to predict an alternative binding mode that facilitates alternative cleavage. We use Streptococcus pyogenes SrtA (spySrtA) as our model enzyme, first confirming that it shows similar standard/alternative cleavage ratios for LPATL, LPATF, and LPATY sequences. Molecular dynamics simulations suggest that when P1' is Leu, this amino acid binds in the canonical S1 pocket, pushing the P1 Thr towards solvent. The P4 Leu (L̲PATL) binds as it does in standard binding, resulting in a puckered binding conformation. We use P1 Glu-containing peptides to support our hypotheses, and present the complex structure of spySrtA-LPALA to confirm favorable accommodation of Leu in the S1 pocket. Overall, we structurally characterize an alternative binding mode for spySrtA and specific target sequences, expanding the potential protein engineering possibilities in sortase-mediated ligation applications.
Collapse
Affiliation(s)
- Brandon A Vogel
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jadon M Blount
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Hanna M Kodama
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Noah J Goodwin-Rice
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Devin J Andaluz
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Sophie N Jackson
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - John M Antos
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, 516 High St - MS9150 Bellingham WA 98225 USA +1-360-650-2826 +1-360-650-2271 +1-360-650-4397
| |
Collapse
|
4
|
López MB, Oterino MB, González JM. The Structural Biology of Catalase Evolution. Subcell Biochem 2024; 104:33-47. [PMID: 38963482 DOI: 10.1007/978-3-031-58843-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.
Collapse
Affiliation(s)
- María Belén López
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María Belén Oterino
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Javier M González
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
5
|
Malik A, Shoombuatong W, Kim CB, Manavalan B. GPApred: The first computational predictor for identifying proteins with LPXTG-like motif using sequence-based optimal features. Int J Biol Macromol 2023; 229:529-538. [PMID: 36596370 DOI: 10.1016/j.ijbiomac.2022.12.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
The cell surface proteins of gram-positive bacteria are involved in many important biological functions, including the infection of host cells. Owing to their virulent nature, these proteins are also considered strong candidates for potential drug or vaccine targets. Among the various cell surface proteins of gram-positive bacteria, LPXTG-like proteins form a major class. These proteins have a highly conserved C-terminal cell wall sorting signal, which consists of an LPXTG sequence motif, a hydrophobic domain, and a positively charged tail. These surface proteins are targeted to the cell envelope by a sortase enzyme via transpeptidation. A variety of LPXTG-like proteins have been experimentally characterized; however, their number in public databases has increased owing to extensive bacterial genome sequencing without proper annotation. In the absence of experimental characterization, identifying and annotating these sequences is extremely challenging. Therefore, in this study, we developed the first machine learning-based predictor called GPApred, which can identify LPXTG-like proteins from their primary sequences. Using a newly constructed benchmark dataset, we explored different classifiers and five feature encodings and their hybrids. Optimal features were derived using the recursive feature elimination method, and these features were then trained using a support vector machine algorithm. The performance of different models was evaluated using independent datasets, and a final model (GPApred) was selected based on consistency during cross-validation and independent assessment. GPApred can be an effective tool for predicting LPXTG-like sequences and can be further employed for functional characterization or drug targeting. Availability: https://procarb.org/gpapred/.
Collapse
Affiliation(s)
- Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
7
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Gao M, Johnson DA, Piper IM, Kodama HM, Svendsen JE, Tahti E, Longshore‐Neate F, Vogel B, Antos JM, Amacher JF. Structural and biochemical analyses of selectivity determinants in chimeric Streptococcus Class A sortase enzymes. Protein Sci 2022; 31:701-715. [PMID: 34939250 PMCID: PMC8862441 DOI: 10.1002/pro.4266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/22/2023]
Abstract
Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative β7-β8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of β7-β8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified β7-β8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.
Collapse
Affiliation(s)
- Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - D. Alex Johnson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Isabel M. Piper
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Hanna M. Kodama
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Justin E. Svendsen
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Elise Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | - Brandon Vogel
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - John M. Antos
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
9
|
Malik A, Subramaniyam S, Kim CB, Manavalan B. SortPred: The first machine learning based predictor to identify bacterial sortases and their classes using sequence-derived information. Comput Struct Biotechnol J 2021; 20:165-174. [PMID: 34976319 PMCID: PMC8703055 DOI: 10.1016/j.csbj.2021.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sortase enzymes are cysteine transpeptidases that embellish the surface of Gram-positive bacteria with various proteins thereby allowing these microorganisms to interact with their neighboring environment. It is known that several of their substrates can cause pathological implications, so researchers have focused on the development of sortase inhibitors. Currently, six different classes of sortases (A-F) are recognized. However, with the extensive application of bacterial genome sequencing projects, the number of potential sortases in the public databases has exploded, presenting considerable challenges in annotating these sequences. It is very laborious and time-consuming to characterize these sortase classes experimentally. Therefore, this study developed the first machine-learning-based two-layer predictor called SortPred, where the first layer predicts the sortase from the given sequence and the second layer predicts their class from the predicted sortase. To develop SortPred, we constructed an original benchmarking dataset and investigated 31 feature descriptors, primarily on five feature encoding algorithms. Afterward, each of these descriptors were trained using a random forest classifier and their robustness was evaluated with an independent dataset. Finally, we selected the final model independently for both layers depending on the performance consistency between cross-validation and independent evaluation. SortPred is expected to be an effective tool for identifying bacterial sortases, which in turn may aid in designing sortase inhibitors and exploring their functions. The SortPred webserver and a standalone version are freely accessible at: https://procarb.org/sortpred.
Collapse
Affiliation(s)
- Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea
| | | | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | | |
Collapse
|
10
|
Makarova KS, Wolf YI, Karamycheva S, Koonin EV. A Unique Gene Module in Thermococcales Archaea Centered on a Hypervariable Protein Containing Immunoglobulin Domains. Front Microbiol 2021; 12:721392. [PMID: 34489912 PMCID: PMC8416519 DOI: 10.3389/fmicb.2021.721392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular mechanisms involved in biological conflicts and self vs nonself recognition in archaea remain poorly characterized. We apply phylogenomic analysis to identify a hypervariable gene module that is widespread among Thermococcales. These loci consist of an upstream gene coding for a large protein containing several immunoglobulin (Ig) domains and unique combinations of downstream genes, some of which also contain Ig domains. In the large Ig domain containing protein, the C-terminal Ig domain sequence is hypervariable, apparently, as a result of recombination between genes from different Thermococcales. To reflect the hypervariability, we denote this gene module VARTIG (VARiable Thermococcales IG). The overall organization of the VARTIG modules is similar to the organization of Polymorphic Toxin Systems (PTS). Archaeal genomes outside Thermococcales encode a variety of Ig domain proteins, but no counterparts to VARTIG and no Ig domains with comparable levels of variability. The specific functions of VARTIG remain unknown but the identified features of this system imply three testable hypotheses: (i) involvement in inter-microbial conflicts analogous to PTS, (ii) role in innate immunity analogous to the vertebrate complement system, and (iii) function in self vs nonself discrimination analogous to the vertebrate Major Histocompatibility Complex. The latter two hypotheses seem to be of particular interest given the apparent analogy to the vertebrate immunity.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| |
Collapse
|
11
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
12
|
González JM. Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis. Heliyon 2021; 7:e05867. [PMID: 33426353 PMCID: PMC7785958 DOI: 10.1016/j.heliyon.2020.e05867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protein sequence similarity networks (SSNs) constitute a convenient approach to analyze large polypeptide sequence datasets, and have been successfully applied to study a number of protein families over the past decade. SSN analysis is herein combined with traditional cladistic and phenetic phylogenetic analysis (respectively based on multiple sequence alignments and all-against-all three-dimensional protein structure comparisons) in order to assist the ancestral reconstruction and integrative revision of the superfamily of metallo-β-lactamases (MBLs). It is shown that only 198 out of 15,292 representative nodes contain at least one experimentally obtained protein structure in the Protein Data Bank or a manually annotated SwissProt entry, that is to say, only 1.3 % of the superfamily has been functionally and/or structurally characterized. Besides, neighborhood connectivity coloring, which measures local network interconnectivity, is introduced for detection of protein families within SSN clusters. This approach provides a clear picture of how many families remain unexplored in the superfamily, while most MBL research is heavily biased towards a few families. Further research is suggested in order to determine the SSN topological properties, which will be instrumental for the improvement of automated sequence annotation methods.
Collapse
|
13
|
Revitt-Mills SA, Watts TD, Lyras D, Adams V, Rood JI. The ever-expanding tcp conjugation locus of pCW3 from Clostridium perfringens. Plasmid 2020; 113:102516. [PMID: 32526229 DOI: 10.1016/j.plasmid.2020.102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
The spore-forming, anaerobic Gram positive pathogen Clostridium perfringens encodes many of its disease-causing toxins on closely related conjugative plasmids. Studies of the tetracycline resistance plasmid pCW3 have identified many of the genes involved in conjugative transfer, which are located in the tcp conjugation locus. Upstream of this locus is an uncharacterised region (the cnaC region) that is highly conserved. This study examined the importance in pCW3 conjugation of several highly conserved proteins encoded in the cnaC region. Conjugative mating studies suggested that the SrtD, TcpN and Dam proteins were required for efficient pCW3 transfer between C. perfringens cells from the same strain background. The requirement of these proteins for conjugation was amplified in matings between C. perfringens cells of different strain backgrounds. Additionally, the putative collagen adhesin protein, CnaC, was only required for the optimal transfer of pCW3 between cells of different strain backgrounds. Based on these studies we postulate that CnaC, SrtD, TcpN and Dam are involved in enhancing the transfer frequency of pCW3. These studies have led to a significant expansion of the tcp conjugation locus, which now encompasses a 19 kb region.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia.
| | - Thomas D Watts
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
14
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Malik A, Kim YR, Jang IH, Hwang S, Oh DC, Kim SB. Genome-based analysis for the bioactive potential of Streptomyces yeochonensis CN732, an acidophilic filamentous soil actinobacterium. BMC Genomics 2020; 21:118. [PMID: 32013859 PMCID: PMC6998099 DOI: 10.1186/s12864-020-6468-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acidophilic members of the genus Streptomyces can be a good source for novel secondary metabolites and degradative enzymes of biopolymers. In this study, a genome-based approach on Streptomyces yeochonensis CN732, a representative neutrotolerant acidophilic streptomycete, was employed to examine the biosynthetic as well as enzymatic potential, and also presence of any genetic tools for adaptation in acidic environment. RESULTS A high quality draft genome (7.8 Mb) of S. yeochonensis CN732 was obtained with a G + C content of 73.53% and 6549 protein coding genes. The in silico analysis predicted presence of multiple biosynthetic gene clusters (BGCs), which showed similarity with those for antimicrobial, anticancer or antiparasitic compounds. However, the low levels of similarity with known BGCs for most cases suggested novelty of the metabolites from those predicted gene clusters. The production of various novel metabolites was also confirmed from the combined high performance liquid chromatography-mass spectrometry analysis. Through comparative genome analysis with related Streptomyces species, genes specific to strain CN732 and also those specific to neutrotolerant acidophilic species could be identified, which showed that genes for metabolism in diverse environment were enriched among acidophilic species. In addition, the presence of strain specific genes for carbohydrate active enzymes (CAZyme) along with many other singletons indicated uniqueness of the genetic makeup of strain CN732. The presence of cysteine transpeptidases (sortases) among the BGCs was also observed from this study, which implies their putative roles in the biosynthesis of secondary metabolites. CONCLUSIONS This study highlights the bioactive potential of strain CN732, an acidophilic streptomycete with regard to secondary metabolite production and biodegradation potential using genomics based approach. The comparative genome analysis revealed genes specific to CN732 and also those among acidophilic species, which could give some insights into the adaptation of microbial life in acidic environment.
Collapse
Affiliation(s)
- Adeel Malik
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yu Ri Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In Hee Jang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
16
|
Proteases as Secreted Exoproteins in Mycoplasmas from Ruminant Lungs and Their Impact on Surface-Exposed Proteins. Appl Environ Microbiol 2019; 85:AEM.01439-19. [PMID: 31540994 DOI: 10.1128/aem.01439-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Many mycoplasma species are isolated from the ruminant lungs as either saprophytes or true pathogens. These wall-less bacteria possess a minimal genome and reduced metabolic capabilities. Accordingly, they rely heavily on their hosts for the supply of essential metabolites and, notably, peptides. Seven of 13 ruminant lung-associated Mycoplasma (sub)species were shown to possess caseinolytic activity when grown in rich media and assessed with a quantitative fluorescence test. For some species, this activity was detected in spent medium, an indication that proteases were secreted outside the mycoplasma cells. To identify these proteases, we incubated concentrated washed cell pellets in a defined medium and analyzed the supernatants by tandem mass spectrometry. Secreted-protease activity was detected mostly in the species belonging to the Mycoplasma mycoides cluster (MMC) and, to a lesser extent, in Mycoplasma bovirhinis Analyzing a Mycoplasma mycoides subsp. capri strain, chosen as a model, we identified 35 expressed proteases among 55 predicted coding genes, of which 5 were preferentially found in the supernatant. Serine protease S41, acquired by horizontal gene transfer, was responsible for the caseinolytic activity, as demonstrated by zymography and mutant analysis. In an M. capricolum mutant, inactivation of the S41 protease resulted in marked modification of the expression or secretion of 17 predicted surface-exposed proteins. This is an indication that the S41 protease could have a role in posttranslational cleavage of surface-exposed proteins and ectodomain shedding, whose physiological impacts still need to be explored.IMPORTANCE Few studies pertaining to proteases in ruminant mycoplasmas have been reported. Here, we focus on proteases that are secreted outside the mycoplasma cell using a mass spectrometry approach. The most striking result is the identification, within the Mycoplasma mycoides cluster, of a serine protease that is exclusively detected outside the mycoplasma cells and is responsible for casein digestion. This protease may also be involved in the posttranslational processing of surface proteins, as suggested by analysis of mutants showing a marked reduction in the secretion of extracellular proteins. By analogy, this finding may help increase understanding of the mechanisms underlying this ectodomain shedding in other mycoplasma species. The gene encoding this protease is likely to have been acquired via horizontal gene transfer from Gram-positive bacteria and sortase-associated surface proteases. Whether this protease and the associated ectodomain shedding are related to virulence has yet to be ascertained.
Collapse
|