1
|
Guevara G, Espinoza Solorzano JS, Vargas Ramírez M, Rusu A, Navarro Llorens JM. Characterizing A21: Natural Cyanobacteria-Based Consortium with Potential for Steroid Bioremediation in Wastewater Treatment. Int J Mol Sci 2024; 25:13018. [PMID: 39684729 DOI: 10.3390/ijms252313018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Microalga-bacteria consortia are increasingly recognized for their effectiveness in wastewater treatment, leveraging the metabolic synergy between microalgae and bacteria to enhance nutrient removal and overall treatment efficiency. These systems offer a sustainable approach to addressing pollutants such as nitrogen and phosphorus. However, their potential in removing specific contaminants like steroid hormones is less explored. In this study, a natural microbial consortium, A21, has been characterized and isolated from primary sewage treatment in Madrid and its potential for bioremediation of steroid hormone effluents has been evaluated. The A21 consortium includes Alphaproteobacteria genera Sphingopyxis and Pseudorhizobium and the Cyanobacterium Cyanobium. Sphingopyxis (31.78%) is known for biodegradation, while Pseudorhizobium (15.68%) exhibits detoxification abilities. Cyanobium (14.2%) may contribute to nutrient uptake and oxygen production. The effects of pH, nitrogen sources, and Sodium chloride concentrations on growth were evaluated. The optimal growth conditions were determined to be a pH range of 7 to 9, a salt concentration below 0.1 M, and the presence of a nitrogen source. The consortium also demonstrated effective growth across various types of wastewaters (primary, secondary, and tertiary treatment effluents). Additionally, A21 exhibited the ability to grow in the presence of steroids and transform them into other compounds, such as converting androstenedione (AD) into androsta-1,4-diene-3,17-dione (ADD) and β-estradiol into estrone.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain
| | | | - Marta Vargas Ramírez
- Department of Genetics, Physiology and Microbiology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Andrada Rusu
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
2
|
Silva-Andrade C, Rodriguez-Fernández M, Garrido D, Martin AJM. Using metabolic networks to predict cross-feeding and competition interactions between microorganisms. Microbiol Spectr 2024; 12:e0228723. [PMID: 38506512 PMCID: PMC11064492 DOI: 10.1128/spectrum.02287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
Understanding the interactions between microorganisms and their impact on bacterial behavior at the community level is a key research topic in microbiology. Different methods, relying on experimental or mathematical approaches based on the diverse properties of bacteria, are currently employed to study these interactions. Recently, the use of metabolic networks to understand the interactions between bacterial pairs has increased, highlighting the relevance of this approach in characterizing bacteria. In this study, we leverage the representation of bacteria through their metabolic networks to build a predictive model aimed at reducing the number of experimental assays required for designing bacterial consortia with specific behaviors. Our novel method for predicting cross-feeding or competition interactions between pairs of microorganisms utilizes metabolic network features. Machine learning classifiers are employed to determine the type of interaction from automatically reconstructed metabolic networks. Several algorithms were assessed and selected based on comprehensive testing and careful separation of manually compiled data sets obtained from literature sources. We used different classification algorithms, including K Nearest Neighbors, XGBoost, Support Vector Machine, and Random Forest, tested different parameter values, and implemented several data curation approaches to reduce the biological bias associated with our data set, ultimately achieving an accuracy of over 0.9. Our method holds substantial potential to advance the understanding of community behavior and contribute to the development of more effective approaches for consortia design.IMPORTANCEUnderstanding bacterial interactions at the community level is critical for microbiology, and leveraging metabolic networks presents an efficient and effective approach. The introduction of this novel method for predicting interactions through machine learning classifiers has the potential to advance the field by reducing the number of experimental assays required and contributing to the development of more effective bacterial consortia.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - María Rodriguez-Fernández
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto J. M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
4
|
Zhang D, Lei Y, Wang C, Lan S, Li X, Xie Y. Responses of composition and metabolism of microbial communities during the remediation of black and odorous water using bioaugmentation and aeration. ENVIRONMENTAL RESEARCH 2024; 243:117895. [PMID: 38081350 DOI: 10.1016/j.envres.2023.117895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
This study elucidated the effect patterns of aeration and bioaugmentation on indigenous microbial communities, metabolites, and metabolic pathways in the remediation of black and odorous water. This is crucial for the precise formulation and targeted development of effective microbial consortia, as well as for tracking and forecasting the bioremediation of black and odorous water. The results confirmed that combining bioaugmentation with aeration markedly enhanced the degradation of COD, NH4+-N, and TN and the conversion of Fe and Mn. Aeration significantly increased the relative abundance of Flavobacterium and Diaphorobacter, and the positive interbacterial interaction in the effective microbial consortia EM31 gave the constituent strain Klebsiella and Bacillus a dominant niche in the bioaugmentation. Furthermore, bioaugmentation improved the capacity of the indigenous microbial consortia to utilize basic carbon source, particularly the utilization of L-glycerol, I-erythritol, glucose-1-phosphate, and the catabolism of cysteine and methionine. Moreover, during the remediation of black and odorous water by aeration and bioaugmentation, Glucosinolate biosynthesis (map00966), Steroid hormone biosynthesis (map00140), Folate biosynthesis (map00790), One carbon pool by folate (map00670), and Tyrosine metabolism (map00350) were identified as key functional metabolic pathways in microbial communities.
Collapse
Affiliation(s)
- Dan Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yu Lei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shuhuan Lan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yifei Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Goraj W, Pytlak A, Grządziel J, Gałązka A, Stępniewska Z, Szafranek-Nakonieczna A. Dynamics of Methane-Consuming Biomes from Wieliczka Formation: Environmental and Enrichment Studies. BIOLOGY 2023; 12:1420. [PMID: 37998019 PMCID: PMC10669130 DOI: 10.3390/biology12111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The rocks surrounding Wieliczka salt deposits are an extreme, deep subsurface ecosystem that as we studied previously harbors many microorganisms, including methanotrophs. In the presented research bacterial community structure of the Wieliczka Salt Mine was determined as well as the methanotrophic activity of the natural microbiome. Finally, an enrichment culture of methane-consuming methanotrophs was obtained. The research material used in this study consisted of rocks surrounding salt deposits in the Wieliczka Salt Mine. DNA was extracted directly from the pristine rock material, as well as from rocks incubated in an atmosphere containing methane and mineral medium, and from a methanotrophic enrichment culture from this ecosystem. As a result, the study describes the composition of the microbiome in the rocks surrounding the salt deposits, while also explaining how biodiversity changes during the enrichment culture of the methanotrophic bacterial community. The contribution of methanotrophic bacteria ranged from 2.614% in the environmental sample to 64.696% in the bacterial culture. The methanotrophic enrichment culture was predominantly composed of methanotrophs from the genera Methylomonas (48.848%) and Methylomicrobium (15.636%) with methane oxidation rates from 3.353 ± 0.105 to 4.200 ± 0.505 µmol CH4 mL-1 day-1.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-280 Lublin, Poland;
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| |
Collapse
|
6
|
Qi J, Zhou Q, Huang D, Yu Z, Meng F. Construction of synthetic anti-fouling consortia: fouling control effects and polysaccharide degradation mechanisms. Microb Cell Fact 2023; 22:230. [PMID: 37936187 PMCID: PMC10631183 DOI: 10.1186/s12934-023-02235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(β-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qicheng Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Danlei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Barros-Rodríguez A, García-Gálvez C, Pacheco P, Kalyuzhnaya MG, Manzanera M. Isolation of Methane Enriched Bacterial Communities and Application as Wheat Biofertilizer under Drought Conditions: An Environmental Contribution. PLANTS (BASEL, SWITZERLAND) 2023; 12:2487. [PMID: 37447048 DOI: 10.3390/plants12132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The search for methanotrophs as plant-growth-promoting rhizobacteria (PGPR) presents an important contribution to mitigating the impact of global warming by restoring the natural soil potential for consuming methane while benefiting plants during droughts. Our in silico simulations suggest that water, produced as a byproduct of methane oxidation, can satisfy the cell growth requirement. In addition to water, methanotrophs can produce metabolites that stimulate plant growth. Considering this, we proposed that applying methanotrophs as PGPR can alleviate the effect of droughts on crops, while stimulating atmospheric methane consumption. In this work, we isolated a series of methanotrophic communities from the rhizospheres of different crops, including Italian sweet pepper and zucchini, using an atmosphere enriched with pure methane gas, to determine their potential for alleviating drought stress in wheat plants. Subsequently, 23 strains of nonmethanotrophic bacteria present in the methanotrophic communities were isolated and characterized. We then analyzed the contribution of the methane-consuming consortia to the improvement of plant growth under drought conditions, showing that some communities contributed to increases in the wheat plants' lengths and weights, with statistically significant differences according to ANOVA models. Furthermore, we found that the presence of methane gas can further stimulate the plant-microbe interactions, resulting in larger plants and higher drought tolerance.
Collapse
Affiliation(s)
- Adoración Barros-Rodríguez
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
- VitaNtech Biotechnology S.L., 18008 Granada, Spain
| | - Carlos García-Gálvez
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
- VitaNtech Biotechnology S.L., 18008 Granada, Spain
| | - Pamela Pacheco
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| | | | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Gowda MT, Prasanna R, Kundu A, Rana VS, Rao U, Chawla G. Differential effects of rhizobacteria from uninfected and infected tomato on Meloidogyne incognita under protected cultivation. J Basic Microbiol 2023. [PMID: 36670089 DOI: 10.1002/jobm.202200695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Intermingled uninfected and root-knot nematode-infected tomato plants are commonly observed under protected cultivation. To understand the role of rhizobacteria underlying the susceptibility to nematode infectivity in these tomato plants, 36 rhizobacteria (18 from each type) with morphologically distinct colony characteristics were isolated from the rhizosphere of uninfected and root-knot nematode-infected tomato plants. The in vitro nematicidal potential of rhizobacteria from the uninfected rhizosphere was significantly higher than that from the infested rhizosphere. The three most effective antagonists were identified as Microbacterium laevaniformans, Staphylococcus kloosii, Priestia aryabhattai from root-knot-nematode-infected tomato rhizosphere and Staphylococcus sciuri, Bacillus pumilus, and Priestia megaterium from the rhizosphere of uninfected tomato. Volatile organic compounds from these rhizobacteria were characterized. Except for S. kloosi, the soil drenching with other rhizobacteria significantly reduced juvenile penetration (>60%) in tomato roots. Furthermore, the application of a single or consortium of these rhizobacteria affected nematode reproduction in tomato. Four consortia of rhizobacteria (S. sciuri + B. pumilus + P. megaterium), (B. pumilus + P. megaterium), (S. sciuri + B. pumilus), and (S. sciuri + P. megaterium) from uninfested rhizosphere and two consortia (M. laevaniformans + P. aryabhattai), (M. laevaniformans + S. kloosii + P. aryabhattai) from infested rhizosphere (IRh) effectively reduced M. incognita reproduction and considerably enhanced plant growth and yield in tomato. The nematicidal efficacy, however, decreased when S. kloosii was applied in the consortium. These distinctive effects illustrate how the plant susceptibility to nematode infectivity is modulated under natural conditions.
Collapse
Affiliation(s)
- Manjunatha T Gowda
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Rani V, Prasanna R, Kaushik R. Prospecting the significance of methane-utilizing bacteria in agriculture. World J Microbiol Biotechnol 2022; 38:176. [PMID: 35922575 DOI: 10.1007/s11274-022-03331-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Microorganisms act as both the source and sink of methane, a potent greenhouse gas, thus making a significant contribution to the environment as an important driver of climate change. The rhizosphere and phyllosphere of plants growing in natural (mangroves) and artificial wetlands (flooded agricultural ecosystems) harbor methane-utilizing bacteria that oxidize methane at the source and reduce its net flux. For several decades, microorganisms have been used as biofertilizers to promote plant growth. However, now their role in reducing net methane flux, especially from flooded agricultural ecosystems is gaining momentum globally. Research in this context has mainly focused on taxonomic aspects related to methanotrophy among diverse bacterial genera, and environmental factors that govern methane utilization in natural and artificial wetland ecosystems. In the last few decades, concerted efforts have been made to develop multifunctional microbial inoculants that can oxidize methane and alleviate greenhouse gas emissions, as well as promote plant growth. In this context, combinations of taxonomic groups commonly found in rice paddies and those used as biofertilizers are being explored. This review deals with methanotrophy among diverse bacterial domains, factors influencing methane-utilizing ability, and explores the potential of novel methane-utilizing microbial consortia with plant growth-promoting traits in flooded ecosystems.
Collapse
Affiliation(s)
- Vijaya Rani
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
10
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Proenca AM, Oliveira MM, Neves PFR, Giongo A, de Oliveira RR, Ott CT, Marconatto L, de Barros Neto HMC, Ketzer JMM, Medina-Silva R. Genomic, biochemical, and phylogenetic evaluation of bacteria isolated from deep-sea sediment harboring methane hydrates. Arch Microbiol 2022; 204:205. [PMID: 35266047 DOI: 10.1007/s00203-022-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
Over half of the organic carbon on Earth's surface is trapped in marine sediment as methane hydrates. Ocean warming causes hydrate dissociation and methane leakage to the water column, rendering the characterization of microbes from hydrate depositions a pressing matter. Through genomic, phylogenetic, and biochemical assays, we characterize the first microorganisms isolated from the Rio Grande Cone (Brazil), reservoir responsible for massive methane releases to the water column. From sediment harboring rich benthic communities, we obtained 43 strains of Brevibacillus sp., Paenibacillus sp. and groups of Bacillus sp. Methane-enriched samples yielded strains of the Pseudomonas fluorescens complex, exhibiting fluorescent siderophore production and broad multi-carbon catabolism. Genomic characterization of a novel Pseudomonas sp. strain indicated 32 genes not identified in the closest related type-species, including proteins involved with mercury resistance. Our results provide phylogenetic and genomic insights on the first bacterial isolates retrieved from a poorly explored region of the South Atlantic Ocean.
Collapse
Affiliation(s)
- Audrey Menegaz Proenca
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Maiara Monteiro Oliveira
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paula Fernanda Ribas Neves
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Adriana Giongo
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Rafael Rodrigues de Oliveira
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Carolina Telles Ott
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Letícia Marconatto
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | | | | | - Renata Medina-Silva
- Geobiology Research Group, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil. .,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Li M, Liu R, Li Y, Wang C, Ma W, Zheng L, Zhang K, Fu X, Li X, Su Y, Huang G, Zhong Y, Liao H. Functional Investigation of Plant Growth Promoting Rhizobacterial Communities in Sugarcane. Front Microbiol 2022; 12:783925. [PMID: 35058904 PMCID: PMC8763851 DOI: 10.3389/fmicb.2021.783925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Plant microbiota are of great importance for host nutrition and health. As a C4 plant species with a high carbon fixation capacity, sugarcane also associates with beneficial microbes, though mechanisms underlying sugarcane root-associated community development remain unclear. Here, we identify microbes that are specifically enriched around sugarcane roots and report results of functional testing of potentially beneficial microbes propagating with sugarcane plants. First, we analyzed recruitment of microbes through analysis of 16S rDNA enrichment in greenhouse cultured sugarcane seedlings growing in field soil. Then, plant-associated microbes were isolated and assayed for beneficial activity, first in greenhouse experiments, followed by field trials for selected microbial strains. The promising beneficial microbe SRB-109, which quickly colonized both roots and shoots of sugarcane plants, significantly promoted sugarcane growth in field trials, nitrogen and potassium acquisition increasing by 35.68 and 28.35%, respectively. Taken together, this report demonstrates successful identification and utilization of beneficial plant-associated microbes in sugarcane production. Further development might facilitate incorporation of such growth-promoting microbial applications in large-scale sugarcane production, which may not only increase yields but also reduce fertilizer costs and runoff.
Collapse
Affiliation(s)
- Mingjia Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ran Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanjun Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cunhu Wang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Ma
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kefei Zhang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing Fu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Huang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Diazotrophic Behaviour in a Non-Sterile Bioreactor: The Effect of O2-Availability. Processes (Basel) 2021. [DOI: 10.3390/pr9112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The behaviour of a locally isolated diazotrophic consortium was investigated with the prospect of agricultural applications. A repeatable culture was obtained in a non-sterile bioreactor. Metagenomic analysis indicated Chryseobacterium ssp. and Flavobacterium ssp. were the dominant species, making up approximately 50% of the microbial community. The oxygen supply was varied and mass-transfer limited growth was attained under all experimental conditions. Negligible amounts of aqueous metabolites were formed, indicating a high selectivity towards biomass production. High oxygen availability resulted in decreased growth efficiencies i.e., the specific energy requirements for biomass synthesis. This was attributed to reduced electron transport chain efficiencies and nitrogenase protection mechanisms. Mass and energy balances indicated that sessile biomass with a high C:N served as a carbon sink. The most efficient growth was measured at an aeration feed composition of 21% oxygen and 79% nitrogen. The study presents one of the only known investigations of operational conditions on diazotrophic growth in a non-sterile bioreactor. In addition, it provides a strong foundation for the development of a Biological Nitrogen Fixation process with scaling potential.
Collapse
|
14
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
15
|
Guggenheim C, Freimann R, Mayr MJ, Beck K, Wehrli B, Bürgmann H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front Microbiol 2020; 11:579427. [PMID: 33178162 PMCID: PMC7593551 DOI: 10.3389/fmicb.2020.579427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.
Collapse
Affiliation(s)
- Carole Guggenheim
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Remo Freimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Magdalena J Mayr
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Karin Beck
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Bernhard Wehrli
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
16
|
Hernández-Melchor DJ, Camacho-Pérez B, Ríos-Leal E, Alarcón-Bonilla J, López-Pérez PA. Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study was aimed at finding the optimal conditions for hydrogen production based on statistical experiments and using a simulation approach. A Plackett–Burman design and steepest ascent were used to screen the key factors to obtain the best hydrogen concentration. According to the regression analysis, cysteine, acetate, and aeration had the best effect. The optimal conditions, using the method of steepest ascent, were aeration (0.125 L/min), acetate (200 mg/L), cysteine (498 mg/L). Once this was determined, an experiment with more than two factors was considered. The combinations: acetate + cysteine without aeration and cysteine without aeration increased hydrogen concentration. These last two criteria were used to validate the dynamic model based on unstructured kinetics. Biomass, nitrogen, acetate, and hydrogen concentrations were monitored. The proposed model was used to perform the multi-objective optimization for various desired combinations. The simultaneous optimization for a minimum ratio of cysteine-acetate improved the concentration of hydrogen to 20 mg/L. Biomass optimized the concentration of hydrogen to 11.5 mg/L. The simultaneous optimization of reaction time (RT) and cysteine improved hydrogen concentration to 28.19 mg/L. The experimental hydrogen production was 11.4 mg/L at 24 h under discontinuous operation. Finally, the proposed model and the optimization methodology calculated a higher hydrogen concentration than the experimental data.
Collapse
Affiliation(s)
- Dulce J. Hernández-Melchor
- Colegio de Postgraduados campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco, 56230, Estado de México, México
| | - Beni Camacho-Pérez
- Universidad Tecnológica de Tecámac, A5 Químico-Biológicas, Carretera Federal México – Pachuca Km 37.5, C.P. 55740, Col. Sierra Hermosa, Tecámac, Estado de México, México
| | - Elvira Ríos-Leal
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, No. 2508, San Pedro Zacatenco, Ciudad de Mexico, D.F., México
| | - Jesus Alarcón-Bonilla
- Universidad Tecnológica de Tecámac, A5 Químico-Biológicas, Carretera Federal México – Pachuca Km 37.5, C.P. 55740, Col. Sierra Hermosa, Tecámac, Estado de México, México
| | - Pablo A. López-Pérez
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920, Apan, Hgo, México
| |
Collapse
|