1
|
Santos LABDO, Feitosa TDAL, Batista MVDA. Comparative structural studies on Bovine papillomavirus E6 oncoproteins: Novel insights into viral infection and cell transformation from homology modeling and molecular dynamics simulations. Genet Mol Biol 2024; 47:e20230346. [PMID: 39136577 PMCID: PMC11320664 DOI: 10.1590/1678-4685-gmb-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Bovine papillomavirus (BPV) infects cattle cells worldwide, leading to hyperproliferative lesions and the potential development of cancer, driven by E5, E6, and E7 oncoproteins along with other cofactors. E6 oncoprotein binds experimentally to various proteins, primarily paxillin and MAML1, as well as hMCM7 and CBP/p300. However, the molecular and structural mechanisms underlying BPV-induced malignant transformation remain unclear. Therefore, we have modeled the E6 oncoprotein structure from non-oncogenic BPV-5 and compared them with oncogenic BPV-1 to assess the relationship between structural features and oncogenic potential. Our analysis elucidated crucial structural aspects of E6, highlighting both conserved elements across genotypes and genotype-specific variations potentially implicated in the oncogenic process, particularly concerning primary target interactions. Additionally, we predicted the location of the hMCM7 binding site on the N-terminal of BPV-5 E6. This study enhances our understanding of the structural characteristics of BPV E6 oncoproteins and their interactions with host proteins, clarifying structural differences and similarities between high and low-risk BPVs. This is important to understand better the mechanisms involved in cell transformation in BPV infection, which could be used as a possible target for therapy.
Collapse
Affiliation(s)
- Lucas Alexandre Barbosa de Oliveira Santos
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| | - Tales de Albuquerque Leite Feitosa
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| | - Marcus Vinicius de Aragão Batista
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Castillo-Sánchez R, Zubillaga-Guerrero MI, Leyva-Vazquez MA, Encarnacion-Guevara S, Flores-Alfaro E, Ramirez-Ruano M, del Carmen Alarcón-Romero L. Bioinformatics Analysis of Human Papillomavirus 16 Integration in Cervical Cancer: Changes in MAGI-1 Expression in Premalignant Lesions and Invasive Carcinoma. Cancers (Basel) 2024; 16:2225. [PMID: 38927930 PMCID: PMC11202195 DOI: 10.3390/cancers16122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
HPV 16 integration is crucial for the onset and progression of premalignant lesions to invasive squamous cell carcinoma (ISCC) because it promotes the amplification of proto-oncogenes and the silencing of tumor suppressor genes; some of these are proteins with PDZ domains involved in homeostasis and cell polarity. Through a bioinformatics approach based on interaction networks, a group of proteins associated with HPV 16 infection, PDZ domains, and direct physical interaction with E6 and related to different hallmarks of cancer were identified. MAGI-1 was selected to evaluate the expression profile and subcellular localization changes in premalignant lesions and ISCC with HPV 16 in an integrated state in cervical cytology; the profile expression of MAGI-1 diminished according to lesion grade. Surprisingly, in cell lines CaSki and SiHa, the protein localization was cytoplasmic and nuclear. In contrast, in histological samples, a change in subcellular localization from the cytoplasm in low-grade squamous intraepithelial lesions (LSIL) to the nucleus in the high-grade squamous intraepithelial lesion (HSIL) was observed; in in situ carcinomas and ISCC, MAGI-1 expression was absent. In conclusion, MAGI-1 expression could be a potential biomarker for distinguishing those cells with normal morphology but with HPV 16 integrated from those showing morphology-related uterine cervical lesions associated with tumor progression.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
| | - Rocio Castillo-Sánchez
- Cell Biology Department, CINVESTAV-IPN Research Institute, Ciudad de México 07360, Mexico;
| | - Ma. Isabel Zubillaga-Guerrero
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| | - Marco Antonio Leyva-Vazquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (B.I.-A.); (M.A.L.-V.)
| | - Sergio Encarnacion-Guevara
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico;
| | - Eugenia Flores-Alfaro
- Clinical and Molecular Epidemiology Research Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico;
| | - Mónica Ramirez-Ruano
- Functional Genomics and Proteomics Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Cytopathology and Histochemistry Research Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico; (O.C.-C.); (M.I.Z.-G.)
| |
Collapse
|
3
|
Skelin J, Luk HY, Butorac D, Boon SS, Tomaić V. The effects of HPV oncoproteins on host communication networks: Therapeutic connotations. J Med Virol 2023; 95:e29315. [PMID: 38115222 DOI: 10.1002/jmv.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/β-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.
Collapse
Affiliation(s)
- Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Dražan Butorac
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
5
|
Jung S, Lee HS, Shin HC, Choi JS, Kim SJ, Ku B. Crystal Structures of Plk1 Polo-Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2-Derived Peptide. J Microbiol 2023; 61:755-764. [PMID: 37684534 DOI: 10.1007/s12275-023-00071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.
Collapse
Affiliation(s)
- Sujin Jung
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Stewart BZ, Caria S, Humbert PO, Kvansakul M. Structural analysis of human papillomavirus E6 interactions with Scribble PDZ domains. FEBS J 2023. [PMID: 36609831 DOI: 10.1111/febs.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
The cell polarity regulator Scribble has been shown to be a critical regulator of the establishment and development of tissue architecture, and its dysregulation promotes or suppresses tumour development in a context-dependent manner. Scribble activity is subverted by numerous viruses. This includes human papillomaviruses (HPVs), who target Scribble via the E6 protein. Binding of E6 from high-risk HPV strains to Scribble via a C-terminal PDZ-binding motif leads to Scribble degradation in vivo. However, the precise molecular basis for Scribble-E6 interactions remains to be defined. We now show that Scribble PDZ1 and PDZ3 are the major interactors of HPV E6 from multiple high-risk strains, with each E6 protein displaying a unique interaction profile. We then determined crystal structures of Scribble PDZ1 and PDZ3 domains in complex with the PDZ-binding motif (PBM) motifs of E6 from HPV strains 16, 18 and 66. Our findings reveal distinct interaction patterns for each E6 PBM motif from a given HPV strain, suggesting that a complex molecular interplay exists that underpins the overt Scribble-HPV E6 interaction and controls E6 carcinogenic potential.
Collapse
Affiliation(s)
- Bryce Z Stewart
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Sofia Caria
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, VIC, 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, Upadhye VJ, Iqbal D, Almojam S, Roychoudhury S, Ojha S, Ruokolainen J, Jha NK, Kesari KK. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Crit Rev Oncol Hematol 2022; 174:103675. [DOI: 10.1016/j.critrevonc.2022.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
|