1
|
Bu FZ, Yu YM, Shen YL, Wu ZY, Li YT. Cocrystallization with nutrient ferulic acid towards reducing the dissolubility behaviors of antifungal drug 5-fluorocytosine: An integrated theoretical and experimental case research. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Bu FZ, Yu YM, Shen YL, Liu L, Yan CW, Wu ZY, Li YT. Cocrystallization-driven self-assembly with vanillic acid offers a new opportunity for surmounting fast and excessive absorption issues of antifungal drug 5-fluorocytosine: a combined theoretical and experimental research. CrystEngComm 2022. [DOI: 10.1039/d2ce00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cocrystal of 5-fluorocytosine (FCY) with vanillic acid (VAA) was assembled via a cocrystallization technique, giving a novel understanding for conquering the dose-limited hepatotoxicity caused by the rapid and almost complete absorption of FCY.
Collapse
Affiliation(s)
- Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yu-Li Shen
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Lu Liu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| |
Collapse
|
3
|
Stott KE, Le T, Nguyen T, Whalley S, Unsworth J, Ly VT, Kolamunnage-Dona R, Hope W. Population Pharmacokinetics and Pharmacodynamics of Itraconazole for Disseminated Infection Caused by Talaromyces marneffei. Antimicrob Agents Chemother 2021; 65:e0063621. [PMID: 34370587 PMCID: PMC8522747 DOI: 10.1128/aac.00636-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
First-line treatment of talaromycosis with amphotericin B deoxycholate (DAmB) is labor-intensive and toxic. Itraconazole is an appealing alternative antifungal agent. Pharmacokinetic data were obtained from 76 patients who were randomized to itraconazole in the Itraconazole versus Amphotericin B for Talaromycosis (IVAP) trial. Plasma levels of itraconazole and its active metabolite, hydroxyitraconazole, were analyzed alongside longitudinal fungal CFU counts in a population model. Itraconazole and hydroxyitraconazole pharmacokinetic variability was considerable, with areas under the concentration-time curve over 24 h (AUC24) of 3.34 ± 4.31 mg·h/liter and 3.57 ± 4.46 mg·h/liter (mean ± standard deviation), respectively. Levels of both analytes were low; itraconazole minimum concentration (Cmin) was 0.11 ± 0.16 mg/liter, and hydroxyitraconazole Cmin was 0.13 ± 0.17 mg/liter. The mean maximal rates of drug-induced killing were 0.206 and 0.208 log10 CFU/ml/h, respectively. There were no associations between itraconazole Cmin/MIC and time to sterilization of the bloodstream (hazard ratio [HR], 1.01; 95% confidence interval [CI], 0.99 to 1.03; P = 0.43), time to death (HR, 0.99; 95% CI, 0.96 to 1.02; P = 0.77), or early fungicidal activity (EFA) (coefficient, -0.004; 95% CI, -0.010 to 0.002; P = 0.18). Similarly, there was no relationship between AUC/MIC and time to sterilization of the bloodstream (HR, 1.00; 95% CI, 0.99 to 1.00; P = 0.50), time to death (HR, 1.00; 95% CI, 0.99 to 1.00; P = 0.91), or EFA (coefficient, -0.0001; 95% CI, -0.0003 to 0.0001; P = 0.19). This study raises the possibility that the failure of itraconazole to satisfy noninferiority criteria against DAmB for talaromycosis in the IVAP trial was a pharmacokinetic and pharmacodynamic failure.
Collapse
Affiliation(s)
- Katharine E. Stott
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Thuy Le
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thu Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah Whalley
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Vo Trieu Ly
- University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Hospital for Tropical diseases, Ho Chi Minh City, Vietnam
| | - Ruwanthi Kolamunnage-Dona
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
- Liverpool Health Partners, Liverpool, United Kingdom
| |
Collapse
|
4
|
Katada Y, Nakagawa S, Nagao M, Yoshida Y, Matsuda Y, Yamamoto Y, Itohara K, Imai S, Yonezawa A, Nakagawa T, Matsubara K, Tanaka S, Nakajima D, Date H, Terada T. Risk factors of breakthrough aspergillosis in lung transplant recipients receiving itraconazole prophylaxis. J Infect Chemother 2021; 28:54-60. [PMID: 34649759 DOI: 10.1016/j.jiac.2021.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Invasive Aspergillus infection (IA) in lung transplantation can result in poor outcomes. Itraconazole has been shown to be effective for fungal prophylaxis in lung transplant recipients. However, IA remains a major cause of death after lung transplantation. Therefore, we aimed to clarify the risk factors for IA on itraconazole prophylaxis. METHODS We examined 120 recipients to uncover their IA epidemiology, clinical characteristics, and outcomes. In addition, a case-control study was performed to identify risk factors of IA. RESULTS Of the 120 patients, 12 developed IA under itraconazole prophylaxis. The patient demographics and clinical characteristics were compared among the following two groups: IA group, 12 patients, and control group, 108 patients. Significant differences were observed in age (p = 0.004), history of interstitial pneumonia (p = 0.032), and CMV infection (p < 0.001) between the groups. Before the onset of IA, 92% (11/12) of the patients received itraconazole with trough concentrations above the therapeutic range. IA developed at 272.9 ± 114.1 days after lung transplantation. Of the 12 patients who developed IA, 66.7% (8/12) had early cessation of cytomegalovirus (CMV) prophylaxis due to toxicity of valganciclovir, as follows: leukocytopenia in 4 patients, and renal dysfunction in 4 patients. Of the 8 patients who stopped valganciclovir, 75% (6/8) developed CMV infection subsequently. CONCLUSION This study suggests that older age, history of interstitial pneumonia, and CMV infection may be important risk factors for IA on itraconazole prophylaxis. These results may help clinicians optimize prophylactic strategies for IA.
Collapse
Affiliation(s)
- Yoshiki Katada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Miki Nagao
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Yoshida
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuya Matsuda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Pharmacy, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Zaragoza R, Maseda E, Pemán J. [Individualized antifungal therapy in critically ill patients with invasive fungal infection]. Rev Iberoam Micol 2021; 38:68-74. [PMID: 34301466 DOI: 10.1016/j.riam.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive candidiasis (IC) is the most common invasive fungal infection (IFI) affecting critically ill patients, followed by invasive pulmonary aspergillosis (IPA). International guidelines provide different recommendations for a first-line antifungal therapy and, in most of them, echinocandins are considered the first-line treatment for IC, and triazoles are so for the treatment of IPA. However, liposomal amphotericinB (L-AmB) is still considered a second-line therapy for both clinical entities. Although in the last decade the management of IFI has improved, several controversies persist. The antifungal drugs currently available may have a suboptimal activity, or be wrongly used in certain IFI involving critically ill patients. The aim of this review is to analyze when to provide individualized antifungal therapy to critically ill patients suffering from IFI, emphasizing the role of L-AmB. Drug-drug interactions, the clinical status, infectious foci (peritoneal candidiasis is discussed), the fungal species involved, and the need of monitoring the concentration of the antifungal drug in the patient are considered.
Collapse
Affiliation(s)
- Rafael Zaragoza
- Servicio de Medicina Intensiva, Hospital Universitario Dr. Peset, Valencia, España.
| | - Emilio Maseda
- Unidad de Críticos Quirúrgicos, Servicio de Anestesia y Reanimación, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - Javier Pemán
- Servicio de Microbiología, Hospital Universitario y Politécnico la Fe, Valencia, España
| |
Collapse
|
6
|
Borman AM, Hughes JM, Oliver D, Fraser M, Sunderland J, Noel AR, Johnson EM. Lessons from isavuconazole therapeutic drug monitoring at a United Kingdom Reference Center. Med Mycol 2020; 58:996-999. [PMID: 32396168 DOI: 10.1093/mmy/myaa022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
We determined isavuconazole serum concentrations for 150 UK patients receiving standard isavuconazole dosing regimens, including serial therapeutic drug monitoring for several patients on prolonged therapy. Mean trough isavuconazole concentrations in these patients were virtually identical to those reported previously from clinical trials, although greater variability was seen in patients below 18 years of age. Serial monitoring in patients receiving prolonged therapy suggested gradual, near-linear accumulation of the drug over many weeks.
Collapse
Affiliation(s)
- Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
- Bristol Specialist Antimicrobial Assay Service, Southmead Hospital, Bristol, United Kingdom
| | - Jessica M Hughes
- Antimicrobial Reference Laboratory, North Bristol Trust, Bristol, United Kingdom
- Bristol Specialist Antimicrobial Assay Service, Southmead Hospital, Bristol, United Kingdom
| | - Debra Oliver
- UK National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Mark Fraser
- UK National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Julie Sunderland
- Antimicrobial Reference Laboratory, North Bristol Trust, Bristol, United Kingdom
- Bristol Specialist Antimicrobial Assay Service, Southmead Hospital, Bristol, United Kingdom
| | - Alan R Noel
- Antimicrobial Reference Laboratory, North Bristol Trust, Bristol, United Kingdom
- Bristol Specialist Antimicrobial Assay Service, Southmead Hospital, Bristol, United Kingdom
| | - Elizabeth M Johnson
- UK National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
- Bristol Specialist Antimicrobial Assay Service, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
7
|
José P, Alvarez-Lerma F, Maseda E, Olaechea P, Pemán J, Soriano C, Zaragoza R. Invasive fungal infection in crtically ill patients: hurdles and next challenges. J Chemother 2019; 31:64-73. [PMID: 30761948 DOI: 10.1080/1120009x.2018.1557799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A narrative review from a multidisciplinary task force of experts in critical care medicine and clinical mycology was carried out. The multi drug-resistant species Candida auris has emerged simultaneously on several continents, causing hospital outbreaks, especially in critically ill patients. Although there are not enough data to support the routine use of continuous antibiotic prophylaxis in patients subjected to extracorporeal membrane oxygenator, a clear increase of invasive fungal infection (IFI) has been described with the use of this device. Possible IFI treatment failures could be related with suboptimal antifungal concentrations despite dose adjustment. Invasive aspergillosis has become an important life-threating infection in intensive care unit related with new risk factors described. IFI remain important problem in critical patients due to the appearance of new risk factors, new species, and resistance increase. Multidisciplinary packages of measures designed to reduce IFI incidence and improve diagnostics tools may reduce the high mortality associated.
Collapse
Affiliation(s)
- Peral José
- a Intensive Care Unit , Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Emilio Maseda
- c Surgical Intensive Care Unit , Hospital Universitario La Paz , Madrid , Spain
| | - Pedro Olaechea
- d Intensive Care Unit , Hospital Universitario de Galdákano- Usansolo , Galdakao , Spain
| | - Javier Pemán
- e Microbiology Department , Hospital Universitari i Politecnic La Fe , Valencia , Spain
| | - Cruz Soriano
- f Intensive Care Unit , Hospital Universitario Ramón y Cajal , Madrid , Spain
| | - Rafael Zaragoza
- g Intensive Care Unit , Hospital Universitario Dr. Peset , Valencia , Spain
| |
Collapse
|
8
|
Stott KE, Hope WW. Therapeutic drug monitoring for invasive mould infections and disease: pharmacokinetic and pharmacodynamic considerations. J Antimicrob Chemother 2017; 72:i12-i18. [PMID: 28355463 DOI: 10.1093/jac/dkx029] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Therapeutic drug monitoring (TDM) may be required to achieve optimal clinical outcomes in the setting of significant pharmacokinetic variability, a situation that applies to a number of anti-mould therapies. The majority of patients receiving itraconazole should routinely be managed with TDM. Voriconazole exhibits highly variable inter-individual pharmacokinetics, and a trough concentration of 1.0-5.5 mg/L is widely accepted although it is derived from relatively low-quality evidence. The case for TDM of posaconazole is currently in a state of flux following the introduction of a newer tablet formulation with improved oral bioavailability, but it may be indicated when used for either prophylaxis or treatment of established disease. The novel broad-spectrum azole drug isavuconazole does not currently appear to require TDM but 'real-world' data are awaited and TDM could be considered in selected clinical cases. For both polyene and echinocandin agents, there are insufficient data regarding the relationship between serum concentrations and therapeutic outcomes to support the routine use of TDM. A number of practical challenges to the implementation of TDM in the treatment of invasive mould infections remain unsolved. The delivery of TDM as a future standard of care will require real-time measurement of drug concentrations at the bedside and algorithms for dosage adjustment. Finally, measures of pharmacodynamic effect are required to deliver therapy that is truly individualized.
Collapse
|
9
|
Shah PJ, Bergman S, Vegi S, Sundareshan V. Fusarium peritonitis successfully managed with posaconazole and catheter removal. Perit Dial Int 2015; 34:566-8. [PMID: 25075003 DOI: 10.3747/pdi.2013.00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Punit J Shah
- Department of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IllinoisDepartment of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Scott Bergman
- Department of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IllinoisDepartment of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Srivalli Vegi
- Department of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Vidya Sundareshan
- Department of Pharmacy, St. John's Hospital, Springfield, Illinois Department of Pharmacy Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
10
|
Amsden JR. Fungal Biomarkers, Antifungal Susceptibility Testing, and Therapeutic Drug Monitoring—Practical Applications for the Clinician in a Tertiary Care Center. CURRENT FUNGAL INFECTION REPORTS 2015. [DOI: 10.1007/s12281-015-0223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Neoh CF, Snell G, Levvey B, Morrissey CO, Stewart K, Kong DC. Antifungal prophylaxis in lung transplantation. Int J Antimicrob Agents 2014; 44:194-202. [DOI: 10.1016/j.ijantimicag.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
12
|
Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2013; 69:1162-76. [PMID: 24379304 DOI: 10.1093/jac/dkt508] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics-pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND The antifungal armamentarium includes a number of drug classes and agents within each class. Successful IFI management depends on optimal matching of drug choice with the individual patient and causative pathogen, and maximizing effectiveness of the selected drug through appropriate dosing and toxicity management. OBJECTIVE This review is intended to provide a brief overview of key factors involved in optimizing antifungal choice and administration for patients with invasive fungal infections (IFIs). FINDINGS Antifungals differ in spectrum of activity, and these differences are critical when selecting the antifungal most likely to provide success for a patient with an IFI. When the species has not yet been identified, an analysis of regional epidemiology and risk factors can provide clues as to the most likely pathogen. For severely immunocompromised patients, a fungicidal agent may be preferred over a fungistatic agent, although more research is needed in this area. Triazoles, particularly itraconazole and posaconazole, exhibit great interpatient pharmacokinetic variability related to absorption. Steps can be taken to maximize absorption when using these agents. Voriconazole concentration is affected by polymorphisms in the major metabolic enzyme, cytochrome P450 2C19. Triazoles, and to a lesser extent other antifungals, are also subject to drug-drug interactions, which needs to be considered when selecting a particular antifungal agent for use in a severely ill patient on polypharmacy. Therapeutic drug monitoring may be a useful adjunct for patients receiving itraconazole, voriconazole, or posaconazole. When the IFI involves a pharmacologically protected site, such as the central nervous system (CNS) or eye, 5-fluorocytosine, fluconazole, or voriconazole are generally preferred. Echinocandin penetration is typically inadequate for IFIs of the CNS or eye. Antifungal agents also differ in their toxicity profiles, and these issues also need to be considered and managed when making an antifungal choice. CONCLUSION Successful management of IFIs relies in part on the accurate selection of an antifungal agent for the infection. Drug characteristics can help in the selection of drug therapy. These characteristics include the drug's spectrum of activity, pharmacokinetics, pharmacodynamics, toxicity profile, and distribution to the infection site. Matching the drug profile to the patient and fungal species contribute to optimal management of infection.
Collapse
Affiliation(s)
- David Andes
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
14
|
Ross AL, Slain D, Cumpston A, Bryant AM, Hamadani M, Craig M. Evaluation of an alternative posaconazole prophylaxis regimen in haematological malignancy patients receiving concomitant stress ulcer prophylaxis. Int J Antimicrob Agents 2012; 40:557-61. [DOI: 10.1016/j.ijantimicag.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/20/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
15
|
Abstract
Effective management of invasive fungal infections (IFIs) depends on early individualized therapy that optimizes efficacy and safety. Considering the negative consequences of IFI, for some high-risk patients the potential benefits of prophylactic therapy may outweigh the risks. When using a prophylactic, empiric, or preemptive therapeutic approach, clinicians must take into account the local epidemiology, spectrum of activity, pharmacokinetic and pharmacodynamic parameters, and safety profile of different antifungal agents, together with unique host-related factors that may affect antifungal efficacy or safety. Therapeutic drug monitoring is increasingly recognized as important or necessary when employing lipophilic triazoles (itraconazole, voriconazole, posaconazole) or flucytosine. Because early diagnostics remain limited for uncommon, yet emerging opportunistic molds (e.g., Mucorales), and treatment delay is associated with increased mortality, early effective management often depends on a high index of suspicion, taking into account predisposing factors, host cues favoring mucormycosis, and local epidemiology. Antifungal options for mucormycosis are limited, and optimal management depends on a multimodal approach that includes early diagnosis/clinical suspicion, correction of underlying predisposing factors, radical debridement of affected tissues, and extended antifungal therapy. This article discusses strategies for the effective management of invasive mycoses, with a particular focus on antifungal hepatotoxicity.
Collapse
Affiliation(s)
- Dimitrios P Kontoyiannis
- Division of Internal Medicine, Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
16
|
|
17
|
|
18
|
|
19
|
Has the era of individualised medicine arrived for antifungals? A review of antifungal pharmacogenomics. Bone Marrow Transplant 2011; 47:881-94. [DOI: 10.1038/bmt.2011.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|