1
|
El Eid R, Chowdhary A, El Zakhem A, Kanj SS. Invasive fungal infections in wars, following explosives and natural disasters: A narrative review. Mycoses 2024; 67:e13762. [PMID: 38951663 DOI: 10.1111/myc.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Infections are well-known complications in patients following traumatic injuries, frequently leading to high morbidity and mortality. In particular, trauma occurring in disaster settings, both natural and man-made, such as armed conflicts and explosives detonation, results in challenging medical conditions that impede the best management practices. The incidence of invasive fungal infections (IFI) is increasing in trauma patients who lack the typical risk factors like an immune compromised state or others. This narrative review will focus on IFI as a direct complication after natural disasters, wars, and man-made mass destruction with a summary of the available evidence about the epidemiology, clinical manifestations, risk factors, microbiology, and proper management. In this setting, the clinical manifestations of IFI may include skin and soft tissue infections, osteomyelitis, visceral infections, and pneumonia. IFI should be considered in the war inflicted patients who are exposed to unsterile environments or have wounds contaminated with soil and decaying organic matter.
Collapse
Affiliation(s)
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Aline El Zakhem
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
3
|
Thanapaul RJRS, Alamneh YA, Finnegan DK, Antonic V, Abu-Taleb R, Czintos C, Boone D, Su W, Sajja VS, Getnet D, Roberds A, Walsh TJ, Bobrov AG. Development of a Combat-Relevant Murine Model of Wound Mucormycosis: A Platform for the Pre-Clinical Investigation of Novel Therapeutics for Wound-Invasive Fungal Diseases. J Fungi (Basel) 2024; 10:364. [PMID: 38786719 PMCID: PMC11122444 DOI: 10.3390/jof10050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions. Our study establishes combat-relevant murine models of wound mucormycosis using Rhizopus arrhizus and Lichtheimia corymbifera, two Mucorales species that cause wound mucormycosis worldwide. These models recapitulate the characteristics of combat-related wounds from explosions, including blast overpressure exposure, full-thickness skin injury, fascial damage, and muscle crush. The independent inoculation of both pathogens caused sustained infections and enlarged wounds. Histopathological analysis confirmed the presence of necrosis and fungal hyphae in the wound bed and adjacent muscle tissue. Semi-quantification of fungal burden by colony-forming units corroborated the infection. Treatment with liposomal amphotericin B, 30 mg/kg, effectively controlled R. arrhizus growth and significantly reduced residual fungal burden in infected wounds (p < 0.001). This study establishes the first combat-relevant murine model of wound mucormycosis, paving the way for developing and evaluating novel antifungal therapies against combat-associated WIFDs.
Collapse
Affiliation(s)
- Rex J. R. Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Daniel K. Finnegan
- Veterinary Services Program, Pathology Department, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Christine Czintos
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dylan Boone
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Wanwen Su
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Venkatasivasai S. Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Thomas J. Walsh
- Departments of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23220, USA
| | - Alexander G. Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
4
|
Jenks JD, Prattes J, Wurster S, Sprute R, Seidel D, Oliverio M, Egger M, Del Rio C, Sati H, Cornely OA, Thompson GR, Kontoyiannis DP, Hoenigl M. Social determinants of health as drivers of fungal disease. EClinicalMedicine 2023; 66:102325. [PMID: 38053535 PMCID: PMC10694587 DOI: 10.1016/j.eclinm.2023.102325] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Disparities in social determinants of health (SDOH) play a significant role in causing health inequities globally. The physical environment, including housing and workplace environment, can increase the prevalence and spread of fungal infections. A number of professions are associated with increased fungal infection risk and are associated with low pay, which may be linked to crowded and sub-optimal living conditions, exposure to fungal organisms, lack of access to quality health care, and risk for fungal infection. Those involved and displaced from areas of armed conflict have an increased risk of invasive fungal infections. Lastly, a number of fungal plant pathogens already threaten food security, which will become more problematic with global climate change. Taken together, disparities in SDOH are associated with increased risk for contracting fungal infections. More emphasis needs to be placed on systematic approaches to better understand the impact and reducing the health inequities associated with these disparities.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Sebastian Wurster
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danila Seidel
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
| | - Matteo Oliverio
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carlos Del Rio
- Emory Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hatim Sati
- Department of Global Coordination and Partnership on Antimicrobial Resistance, World Health Organization, Geneva, Switzerland
| | - Oliver A. Cornely
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Koln), University of Cologne, Cologne, Germany
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
5
|
Herbst I, Helleberg M, Overgaard-Steensen C, Holmgaard R. Mucorales-disseminated infection in burn wound. BMJ Case Rep 2023; 16:e253879. [PMID: 37914163 PMCID: PMC10626915 DOI: 10.1136/bcr-2022-253879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
A previously fit and well man in his 50s was rescued from a burning apartment with Glasgow Coma Scale 3 and admitted to the burn intensive care unit with 18% mixed dermal and full thickness burns and inhalation injury. He received standardised acute burn treatment according to the Emergency Management of Severe Burn guidelines and was found to have acute kidney injury requiring dialysis and cerebral watershed infarcts. The burns were deep especially on the left leg that was deemed unsalvageable and on day 8, he underwent a mid-femoral amputation.A wound swab on day 8 grew mould and with progression of skin necrosis, Mucorales infection was clinically suspected. Microbiological assessment of the swab confirmed Mucorales infection-an invasive fungus with the ability to invade blood vessels leading to vessel thrombosis and tissue necrosis and associated with high mortality. Recommended radical debridement with free cutaneous margins was not possible due to the widespread disease, and the patient was treated conservatively with antifungal therapy and survived.
Collapse
Affiliation(s)
- Isabella Herbst
- Department of Plastic Surgery and Burns Treatment, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Rikke Holmgaard
- Department of Plastic Surgery and Burns Treatment, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Samdavid Thanapaul RJR, Roberds A, Rios KE, Walsh TJ, Bobrov AG. Hyphae of Rhizopus arrhizus and Lichtheimia corymbifera Are More Virulent and Resistant to Antifungal Agents Than Sporangiospores In Vitro and in Galleria mellonella. J Fungi (Basel) 2023; 9:958. [PMID: 37888214 PMCID: PMC10607466 DOI: 10.3390/jof9100958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
Mucorales species cause debilitating, life-threatening sinopulmonary diseases in immunocompromised patients and penetrating wounds in trauma victims. Common antifungal agents against mucormycosis have significant toxicity and are often ineffective. To evaluate treatments against mucormycosis, sporangiospores are typically used for in vitro assays and in pre-clinical animal models of pulmonary infections. However, in clinical cases of wound mucormycosis caused by traumatic inoculation, hyphal elements found in soil are likely the form of the inoculated organism. In this study, Galleria mellonella larvae were infected with either sporangiospores or hyphae of Rhizopus arrhizus and Lichtheimia corymbifera. Hyphal infections resulted in greater and more rapid larval lethality than sporangiospores, with an approximate 10-16-fold decrease in LD50 of hyphae for R. arrhizus (p = 0.03) and L. corymbifera (p = 0.001). Liposomal amphotericin B, 10 mg/kg, was ineffective against hyphal infection, while the same dosage was effective against infections produced by sporangiospores. Furthermore, in vitro, antifungal susceptibility studies show that minimum inhibitory concentrations of several antifungal agents against hyphae were higher when compared to those of sporangiospores. These findings support using hyphal elements of Mucorales species for virulence testing and antifungal drug screening in vitro and in G. mellonella for studies of wound mucormycosis.
Collapse
Affiliation(s)
- Rex Jeya Rajkumar Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
| | - Kariana E. Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23220, USA;
- Department of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander G. Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
| |
Collapse
|
7
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
8
|
Brown KV, Roberts DC, Wordsworth M, Duraku LS, Jose RM, Power DM, Stapley SA. Management of conflict injuries to the upper limb. Part 1: assessment and early surgical care. J Hand Surg Eur Vol 2022; 47:687-697. [PMID: 35579217 DOI: 10.1177/17531934221098916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Upper limb injuries are common in conflict zones. The functions of the upper limb are impossible to replicate with prosthetic replacement and wherever possible attempts should be made to preserve the limb with further secondary reconstruction aimed at restoration of function. Casualty assessment, haemorrhage control and resuscitation are simultaneously undertaken at the receiving medical facility. Primary surgical management involves decontamination and debridement, skeletal stabilization, restoration of vascularity, compartment fasciotomy where indicated and wound temporization with dressings. Operative findings and interventions should be documented and if evacuation of the casualty is possible, copies should be provided in the medical records to facilitate communication in the chain of care. Secondary procedures are required for further assessment and debridement prior to planning reconstruction and definitive fracture stabilization, nerve repair, wound cover or closure.
Collapse
Affiliation(s)
- Kate V Brown
- The Royal Centre for Defence Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Pulvertaft Hand Unit, Derby Royal Hospital, Derby, UK
| | - Darren C Roberts
- Queen Alexandra Hospital Hand Unit, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Matthew Wordsworth
- The Royal Centre for Defence Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Birmingham Hand Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Liron S Duraku
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands.,The Peripheral Nerve Injury Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Rajive M Jose
- The Birmingham Hand Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Dominic M Power
- The Birmingham Hand Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Peripheral Nerve Injury Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sarah A Stapley
- The Royal Centre for Defence Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Queen Alexandra Hospital Hand Unit, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| |
Collapse
|
9
|
Tribble DR, Spott MA, Shackleford SA, Gurney JM, Murray BCK. Department of Defense Trauma Registry Infectious Disease Module Impact on Clinical Practice. Mil Med 2022; 187:7-16. [PMID: 35512379 DOI: 10.1093/milmed/usac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Joint Trauma System (JTS) is a DoD Center of Excellence for Military Health System trauma care delivery and the DoD's reference body for trauma care in accordance with National Defense Authorization Act for Fiscal Year 2017. Through the JTS, evidence-based clinical practice guidelines (CPGs) have been developed and subsequently refined to standardize and improve combat casualty care. Data are amassed through a single, centralized DoD Trauma Registry to support process improvement measures with specialty modules established as the registry evolved. Herein, we review the implementation of the JTS DoD Trauma Registry specialty Infectious Disease Module and the development of infection-related CPGs and summarize published findings on the subsequent impact of the Infectious Disease Module on combat casualty care clinical practice and guidelines. METHODS The DoD Trauma Registry Infectious Disease Module was developed in collaboration with the Infectious Disease Clinical Research Program (IDCRP) Trauma Infectious Disease Outcomes Study (TIDOS). Infection-related information (e.g., syndromes, antibiotic management, and microbiology) were collected from military personnel wounded during deployment June 1, 2009 through December 31, 2014 and medevac'd to Landstuhl Regional Medical Center in Germany before transitioning to participating military hospitals in the USA. RESULTS To support process improvements and reduce variation in practice patterns, data collected through the Infectious Disease Module have been utilized in TIDOS analyses focused on assessing compliance with post-trauma antibiotic prophylaxis recommendations detailed in JTS CPGs. Analyses examined compliance over three time periods: 6 months, one-year, and 5 years. The five-year analysis demonstrated significantly improved adherence to recommendations following the dissemination of the 2011 JTS CPG, particularly with open fractures (34% compliance compared to 73% in 2013-2014). Due to conflicting recommendations regarding use of expanded Gram-negative coverage with open fractures, infectious outcomes among patients with open fractures who received cefazolin or expanded Gram-negative coverage (cefazolin plus fluoroquinolones and/or aminoglycosides) were also examined in a TIDOS analysis. The lack of a difference in the proportion of osteomyelitis (8% in both groups) and the significantly greater recovery of Gram-negative organisms resistant to aminoglycosides or fluoroquinolones among patients who received expanded Gram-negative coverage supported JTS recommendations regarding the use of cefazolin with open fractures. Following recognition of the outbreak of invasive fungal wound infections (IFIs) among blast casualties injured in Afghanistan, the ID Module was refined to capture data (e.g., fungal culture and histopathology findings, wound necrosis, and antifungal management) needed for the TIDOS team to lead the DoD outbreak investigation. These data captured through the Infectious Disease Module provided support for the development of a JTS CPG for the prevention and management of IFIs, which was later refined based on subsequent TIDOS IFI analyses. CONCLUSIONS To improve combat casualty care outcomes and mitigate high-consequence infections in future conflicts, particularly in the event of prolonged field care, expansion, refinement, and a mechanism for sustainability of the DoD Trauma Registry Infectious Disease Module is needed to include real-time surveillance of infectious disease trends and outcomes.
Collapse
Affiliation(s)
- David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mary Ann Spott
- Joint Trauma System, JBSA Fort Sam Houston, TX 78234, USA
| | | | | | | |
Collapse
|
10
|
Mende K, Akers KS, Tyner SD, Bennett JW, Simons MP, Blyth DM, Li P, Stewart L, Tribble DR. Multidrug-Resistant and Virulent Organisms Trauma Infections: Trauma Infectious Disease Outcomes Study Initiative. Mil Med 2022; 187:42-51. [PMID: 35512375 DOI: 10.1093/milmed/usab131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION During the wars in Iraq and Afghanistan, increased incidence of multidrug-resistant (MDR) organisms, as well as polymicrobial wounds and infections, complicated the management of combat trauma-related infections. Multidrug resistance and wound microbiology are a research focus of the Trauma Infectious Disease Outcomes Study (TIDOS), an Infectious Disease Clinical Research Program, Uniformed Services University, research protocol. To conduct comprehensive microbiological research with the goal of improving the understanding of the complicated etiology of wound infections, the TIDOS MDR and Virulent Organisms Trauma Infections Initiative (MDR/VO Initiative) was established as a collaborative effort with the Brooke Army Medical Center, Naval Medical Research Center, U.S. Army Institute of Surgical Research, and Walter Reed Army Institute of Research. We provide a review of the TIDOS MDR/VO Initiative and summarize published findings. METHODS Antagonism and biofilm formation of commonly isolated wound bacteria (e.g., ESKAPE pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), antimicrobial susceptibility patterns, and clinical outcomes are being examined. Isolates collected from admission surveillance swabs, as part of infection control policy, and clinical infection workups were retained in the TIDOS Microbiological Repository and associated clinical data in the TIDOS database. RESULTS Over the TIDOS study period (June 2009 to December 2014), more than 8,300 colonizing and infecting isolates were collected from military personnel injured with nearly one-third of isolates classified as MDR. At admission to participating U.S. military hospitals, 12% of wounded warriors were colonized with MDR Gram-negative bacilli. Furthermore, 27% of 913 combat casualties with ≥1 infection during their trauma hospitalization had MDR Gram-negative bacterial infections. Among 335 confirmed combat-related extremity wound infections (2009-2012), 61% were polymicrobial and comprised various combinations of Gram-negative and Gram-positive bacteria, yeast, fungi, and anaerobes. Escherichia coli was the most common Gram-negative bacilli isolated from clinical workups, as well as the most common colonizing MDR secondary to extended-spectrum β-lactamase resistance. Assessment of 479 E. coli isolates collected from wounded warriors found 188 pulsed-field types (PFTs) from colonizing isolates and 54 PFTs from infecting isolates without significant overlap across combat theaters, military hospitals, and study years. A minority of patients with colonizing E. coli isolates developed subsequent infections with the same E. coli strain. Enterococcus spp. were most commonly isolated from polymicrobial wound infections (53% of 204 polymicrobial cultures). Patients with Enterococcus infections were severely injured with a high proportion of lower extremity amputations and genitourinary injuries. Approximately 65% of polymicrobial Enterococcus infections had other ESKAPE organisms isolated. As biofilms have been suggested as a cause of delayed wound healing, wound infections with persistent recovery of bacteria (isolates of same organism collected ≥14 days apart) and nonrecurrent bacterial isolates were assessed. Biofilm production was significantly associated with recurrent bacteria isolation (97% vs. 59% with nonrecurrent isolates; P < 0.001); however, further analysis is needed to confirm biofilm formation as a predictor of persistent wound infections. CONCLUSIONS The TIDOS MDR/VO Initiative provides comprehensive and detailed data of major microbial threats associated with combat-related wound infections to further the understanding of wound etiology and potentially identify infectious disease countermeasures, which may lead to improvements in combat casualty care.
Collapse
Affiliation(s)
- Katrin Mende
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.,Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Kevin S Akers
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Stuart D Tyner
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason W Bennett
- Multidrug-Resistant Organisms Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mark P Simons
- Naval Medical Research Center, Silver Spring, MD 20910, USA
| | - Dana M Blyth
- Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Ping Li
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Laveta Stewart
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Cirks BT, Rajnik M, Madden KB, Otollini M. Pediatric Infectious Diseases Encountered During Wartime Part II: Infectious Diseases Complications in the Individual Pediatric Patient. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|