1
|
Moreira MP, Franco EP, Barros BAF, Anjos BRD, Almada DDG, Barbosa INT, Braga LDC, Cassali GD, Silva LM. Standard chemotherapy impacts on in vitro cellular heterogeneity in spheroids enriched with cancer stem cells (CSCs) derived from triple-negative breast cancer cell line. Biochem Biophys Res Commun 2024; 734:150765. [PMID: 39357337 DOI: 10.1016/j.bbrc.2024.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Triple-negative breast cancer is a heterogeneous disease with high recurrence and mortality, linked to cancer stem cells (CSCs). Our study characterized distinct cell subpopulations and signaling pathways to explore chemoresistance. We observed cellular heterogeneity among and within the cells regarding phenotyping and drug response. In untreated BT-549 cells, we noted plasticity properties in both CD44+/CD24+/CD146+ hybrid cells and CD44-/CD24+/CD146+ epithelial cells, enabling phenotypic conversion into CD44+/CD24-/CD146- epithelial-mesenchymal transition (EMT)-like like breast CSCs (BCSCs). Additionally, non-BCSCs may give rise to ALDH+ epithelial-like BCSCs. Enriched BCSCs demonstrated the potential to differentiation into CD44-/CD24-/CD146- cells and exhibited self-renewal capabilities. Similar phenotypic plasticity was not observed in untreated Hs 578T and HMT-3522 S1 cells. BT-549 cells were more resistant to paclitaxel/PTX than to doxorubicin/DOX, a phenomenon potentially linked to the presence of CD24+ cells prior to treatment. Under the CSCs-enriched spheroids model, BT-549 demonstrated extreme resistance to DOX, likely due to the enrichment of BCSCs CD44+/CD24-/CD146- and the tumor cells CD44-/CD24-/CD146-. Additionally, DOX treatment induced the enrichment of plastic and chemoresistant cells, further exacerbating resistance mechanisms. BT-549 exhibited high heterogeneity, leading to significant alterations in cell subpopulations under BCSCs enrichment, demonstrating increased phenotypic plasticity during EMT. This phenomenon appears to play a major role in DOX resistance, as indicated by the presence of the refractory cells CD44+/CD24-/CD146- BCSCs EMT-like, CD44-/CD24-/CD146- tumor cells, and elevated STAT3 expression. Gene expression data from BT-549 CSCs-enriched spheroids suggests that ferroptosis may be occurring via autophagic regulation triggered by RAB7A, highlighting this gene as a potential therapeutic target.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Eliza Pereira Franco
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Bárbara Avelar Ferreira Barros
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bianca Rocha Dos Anjos
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela de Gouvêa Almada
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Isabela Nery Tavares Barbosa
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Letícia da Conceição Braga
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
2
|
Chan HY, Ramasamy TS, Chung FFL, Teow SY. Role of sirtuin 1 (SIRT1) in regulation of autophagy and nuclear factor-kappa Beta (NF-ĸβ) pathways in sorafenib-resistant hepatocellular carcinoma (HCC). Cell Biochem Biophys 2024; 82:959-968. [PMID: 38466472 DOI: 10.1007/s12013-024-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-ĸβ signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-ĸβ signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-ĸβ regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-ĸβ signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-ĸβ axis could further improve the therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Hui-Yin Chan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, 325060, Zhejiang Provinve, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morries Ave, Union, NJ, 07083, USA.
| |
Collapse
|
3
|
Kubatka P, Koklesova L, Mazurakova A, Brockmueller A, Büsselberg D, Kello M, Shakibaei M. Cell plasticity modulation by flavonoids in resistant breast carcinoma targeting the nuclear factor kappa B signaling. Cancer Metastasis Rev 2024; 43:87-113. [PMID: 37789138 PMCID: PMC11016017 DOI: 10.1007/s10555-023-10134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
4
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
5
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
7
|
Muñoz Velasco R, Jiménez Sánchez P, García García A, Blanco Martinez-Illescas R, Pastor Senovilla Á, Lozano Yagüe M, Trento A, García-Martin RM, Navarro D, Sainz B, Rodríguez Peralto JL, Sánchez-Arévalo Lobo VJ. Targeting BPTF Sensitizes Pancreatic Ductal Adenocarcinoma to Chemotherapy by Repressing ABC-Transporters and Impairing Multidrug Resistance (MDR). Cancers (Basel) 2022; 14:cancers14061518. [PMID: 35326669 PMCID: PMC8946837 DOI: 10.3390/cancers14061518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a devastating disease and an extremely chemoresistant tumour. In the present manuscript, we described the role of BPTF during tumour pancreatic ductal adenocarcinoma progression and in response to gemcitabine treatment, a gold standard treatment in this tumour type. Through different genetic approaches, we reduced BPTF levels in a panel of pancreatic ductal adenocarcinoma cell lines. We validated its therapeutic effect in cell cultures and in mouse models of pancreatic cancer. A reduction in BPTF levels impaired cell proliferation and sensitized pancreatic tumour cells to gemcitabine. We demonstrated that BPTF-silencing reduced the expression of several ABC-transporters, which are involved in gemcitabine resistance, and enhanced its accumulation in the tumour cell, improving its therapeutic effect. Abstract Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis due to its late diagnosis and strong chemoresistance to the current treatments. Therefore, finding new therapeutic targets is an urgent need nowadays. In this study, we report the role of the chromatin remodeler BPTF (Bromodomain PHD Finger Transcription Factor) as a therapeutic target in PDA. BPTF-silencing dramatically reduced cell proliferation and migration in vitro and in vivo in human and mouse PDA cell lines. Moreover, BPTF-silencing reduces the IC50 of gemcitabine in vitro and enhanced its therapeutic effect in vivo. Mechanistically, BPTF is required for c-MYC recruitment to the promoter of ABC-transporters and its downregulation facilitates gemcitabine accumulation in tumour cells, increases DNA damage, and a generates a strong synergistic effect in vivo. We show that BPTF is a therapeutic target in pancreatic ductal adenocarcinoma due to its strong effect on proliferation and in response to gemcitabine.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Ana García García
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Raquel Blanco Martinez-Illescas
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Ángela Pastor Senovilla
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Marian Lozano Yagüe
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Alfonsina Trento
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Rosa María García-Martin
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Diego Navarro
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.N.); (B.S.J.)
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.N.); (B.S.J.)
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, 28029 Madrid, Spain
| | - José Luis Rodríguez Peralto
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
- Correspondence:
| |
Collapse
|
8
|
Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021; 30:450-462. [PMID: 34927506 DOI: 10.1080/1061186x.2021.2020798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Yanguo Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Bingjie Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Qiang Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Huimin Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| |
Collapse
|
9
|
Hu Y, Jiao B, Wang C, Wu J. Regulation of temozolomide resistance in glioma cells via the RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther 2021; 27:552-563. [PMID: 33460245 PMCID: PMC8025621 DOI: 10.1111/cns.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor-interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. METHODS RIP2 expression was inhibited in TMZ-resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit-8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF-κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ-resistant glioma xenograft models were established to evaluate the role of the RIP2/NF-κB/MGMT signaling pathway in drug resistance. RESULTS We observed that RIP2 expression was upregulated in TMZ-resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF-κB signaling pathway and upregulate the expression of O6-methylguanine-DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ-resistant glioma xenograft model, treatment with JSH-23 (an NF-κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. CONCLUSION We report that the RIP2/NF-κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF-κB or MGMT activity could constitute a novel strategy for the treatment of RIP2-positive TMZ-resistant glioma.
Collapse
Affiliation(s)
- Yu‐Hua Hu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bao‐Hua Jiao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Cheng‐Ye Wang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian‐Liang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
10
|
Mu Y, Cory TJ. Suppression of HIV-1 Viral Replication by Inhibiting Drug Efflux Transporters in Activated Macrophages. Curr HIV Res 2021; 19:128-137. [PMID: 33032513 DOI: 10.2174/1570162x18666201008143833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ethanol has been shown to increase oxidative stress, drug efflux transporter expression, and promote HIV progression. Macrophages, which express drug efflux transporters, serve as an essential sanctuary site for HIV. The antiretroviral drug lopinavir, a protease inhibitor, is a substrate of the drug efflux transporters P-glycoprotein and multidrug resistance-associated protein 1. The NF-κB signaling pathway is associated with inflammation and drug efflux transporter expression. OBJECTIVE To examine the effects of ethanol on drug efflux transporters and HIV replication of macrophages and develop strategies to increase the efficacy of the protease inhibitor. METHODS The expression of PGP and MRP1 was examined with western blot. The NF- κB inhibition was assessed with nuclear western blot. LC-MS/MS and p24 ELISA were used to assess intracellular LPV and viral replication. RESULTS Ethanol at 40mM slightly increased drug efflux transporter PGP and MRP1 expression in activated macrophages. IKK-16, an NF- κB inhibitor, counteracted the increased transporter expression caused by ethanol exposure. MK571, an MRP1 inhibitor, and IKK-16 significantly increased intracellular LPV concentration with or without ethanol treatment. MK571 significantly increased LPV efficacy in suppressing viral replication with or without ethanol treatment. A decreasing trend and a significant decrease were observed with IKK-16+LPV treatment compared with LPV alone in the no ethanol treatment and ethanol treatment groups, respectively. CONCLUSION In activated macrophages, inhibiting drug efflux transporter MRP1 activity and reducing its expression may represent a promising approach to suppress viral replication by increasing intracellular antiretroviral concentrations. However, different strategies may be required for ethanolrelated vs. untreated groups.
Collapse
Affiliation(s)
- Ying Mu
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| |
Collapse
|
11
|
Aaliyari-Serej Z, Ebrahimi A, Barazvan B, Ebrahimi-Kalan A, Hajiasgharzadeh K, Kazemi T, Baradaran B. Recent Advances in Targeting of Breast Cancer Stem Cells Based on Biological Concepts and Drug Delivery System Modification. Adv Pharm Bull 2020; 10:338-349. [PMID: 32665892 PMCID: PMC7335982 DOI: 10.34172/apb.2020.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer with various biological diversity known as the common reason of death in the world and despite progress in novel therapeutic approaches, it faced with failure and recurrence in general. Recent clinical and preclinical statistics support cancer stem cells (CSCs) hypothesis and its similarities with normal stem cells. Evaluation of related paper conclude in significance finding in the further characterization of CSCs biology such as surface biomarkers, microenvironment regulatory molecules, cell signaling pathways, cell to cell transition and drug efflux pumps to overcome multidrug resistance and effective therapy. Emerging novel data indicate biological concepts in the base of unsuccessful treatment. A powerful understanding of the cell signaling pathways in cancer and CSCs topics can be led us to define and control treatment problems in cancer. More recently nano medicine based on drug delivery system modification and new implications on combinatorial therapy have been used to treat breast cancer effectively. The aim of this review is focus on CSCs as a potential target of cancer therapy, to overcome the limitation and problems of current therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Zeynab Aaliyari-Serej
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic Uuniversity, Istanbul, Turkey
| | - Balal Barazvan
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Jia J, Cui Y, Tan Z, Ma W, Jiang Y. MicroRNA-579-3p Exerts Neuroprotective Effects Against Ischemic Stroke via Anti-Inflammation and Anti-Apoptosis. Neuropsychiatr Dis Treat 2020; 16:1229-1238. [PMID: 32494142 PMCID: PMC7231765 DOI: 10.2147/ndt.s240698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS Multiple studies have found that microRNAs (miRNAs) are involved in the development of cerebral ischemia. MiR-579-3p can inhibit inflammatory responses and apoptosis, leading to ischemia/reperfusion (I/R) damage. However, the mechanism of how miR-579-3p actions in brain I/R injury remains unclear. This study aimed to investigate the mechanism of the role of miR-579-3p in brain I/R injury. METHODS A rat model of cerebral ischemia-reperfusion injury was established by suture method. The effects of miR-579-3p on cerebral infarction size, brain water content, and neurological symptoms were evaluated. Flow cytometry was used to detect apoptosis. ELISA was used to detect the level of inflammatory factors. Western blot was used to detect the expression of P65, NCOA1, Bcl-2 and Bax. The relationship between miR-579-3p and NCOA1 was analyzed by bioinformatics analysis and luciferase assay. RESULTS Overexpression of miR-579-3p reduced infarct volume, brain water content and neurological deficits. Overexpression of miR-579-3p inhibited the expression level of the inflammatory cytokines, such as TNF-α, IL-6, COX-2 and iNOS, and increased the expression level of IL-10. MiR-579-3p overexpression inhibited NF-кB activity by reducing NRIP1. In addition, miR-579-3p could reduce the apoptotic rate of cortical neurons. Overexpression of miR-579-3p inhibited the activity of caspase-3, increased the expression level of anti-apoptotic gene Bcl-2 in neurons, and decreased the expression level of apoptotic gene Bax. CONCLUSION miR-579-3p can be used to treat brain I/R injury, and its neuroprotective effect may be ascribed to the reduction of inflammation and apoptosis.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province 410011, People's Republic of China
| |
Collapse
|
13
|
Yang H, Chen Y, Yan H, Wu H. Effects of dexmedetomidine on glioma cells in the presence or absence of cisplatin. J Cell Biochem 2019; 121:723-734. [PMID: 31452248 DOI: 10.1002/jcb.29318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 11/08/2022]
Abstract
With the extensive use of dexmedetomidine (Dex) in the surgical resection of tumours for its potent sedative and analgesic properties, its effects on various properties of tumours have received increased attention. The study described herein aimed to investigate the effects of Dex on glioma cells in the presence or absence of cisplatin (DDP). Glioma U251 and U87MG cells were treated with different doses (1-50 nM) of Dex for 12 hours, then recultured in a Dex-free medium. In addition, Dex was added to U251 and U87MG cells 12 hours before or simultaneously with a 12-hour DDP treatment. Treatment with Dex increased the viability of both cell lines; this effect continued for at least 24 hours after Dex was removed. A cell invasion assay indicated that Dex inhibited cell invasion at 50 nM, but not at 10 nM. Western blot analysis showed that Dex increased the expression of phosphorylated extracellular-signal-regulated kinase 1/2, phosphoitide 3-kinase and p-AKT, but decreased ROCK protein levels at a dose of 50 nM. Intracellular Ca 2+ concentration was decreased by Dex in a dose-dependent manner. DDP toxicity was attenuated by 10 nM Dex added either before or with DDP treatment. However, pretreatment with 50 nM Dex instead enhanced the toxicity of DDP. Single-dose treatment with Dex did not significantly change glioma volume in nude mice, but changed the expression of Ki67 and matrix metalloproteinase-3 in the tumour. In conclusion, this study provides evidence of the regulatory effects of Dex on proliferation, invasion and chemosensitivity of glioma cells, and outlines potential mechanisms for these effects.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Yudan Chen
- Department of Hemodialysis, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Hui Yan
- Department of Neurosurgery, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Hao Wu
- Department of Neurosurgery, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| |
Collapse
|
14
|
Wang X, He S, Gu Y, Wang Q, Chu X, Jin M, Xu L, Wu Q, Zhou Q, Wang B, Zhang Y, Wang H, Zheng L. Fatty acid receptor GPR120 promotes breast cancer chemoresistance by upregulating ABC transporters expression and fatty acid synthesis. EBioMedicine 2019; 40:251-262. [PMID: 30738829 PMCID: PMC6413582 DOI: 10.1016/j.ebiom.2018.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Chemoresistance is the major cause of neoadjuvant treatment failure in breast cancer patients. Despite recent progress, the mechanism underlying chemoresistance remains to be further defined. METHODS Expression of G protein-coupled receptor 120 (GPR120) was analyzed by immunohistochemistry in the biopsies of primary breast cancer who subsequently underwent preoperative neoadjuvant chemotherapy. In vitro and in vivo loss- and gain-of -function studies were performed to reveal the effects and related mechanism of GPR120 signaling pathway in the chemoresistance of breast cancer cells. FINDINGS We identified that GPR120, a receptor for long-chain fatty acids, was important for the acquisition of chemoresistance in breast cancer cells. We showed that GPR120 expression was positively associated with clinical response to neoadjuvant chemotherapy in patients. In breast cancer cells, GPR120 enhanced the de novo synthesis of fatty acids that served as GPR120 ligands to activate GPR120 signaling via a feedback mechanism. Upregulated GPR120 signaling rendered cells resistant to epirubicin-induced cell death by upregulating ABC transporters expression and thus decreasing the intracellular accumulation of epirubicin. Akt/NF-κB pathway was responsible for the GPR120-mediated expression of ABC transporters leading to modulation of the concentration of chemotherapeutic drugs in cells. The functional importance of GPR120 in chemoresistance was further validated using epirubicin-treated tumor xenografts, in which we showed that blockade of GPR120 signaling with AH7614 or GPR120-siRNA significantly compromised chemoresistance. INTERPRETATION Our results highlight that GPR120 might be a promising therapeutic target for breast cancer chemoresistance. FUND: National Natural Science Foundation of China, Ministry of Science and Technology of China, Program of Science and Technology Commission of Shanghai Municipality.
Collapse
Affiliation(s)
- Xue Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Yuting Gu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiwei Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Chu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Xu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianjun Zhou
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China.
| | - Leizhen Zheng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China..
| |
Collapse
|
15
|
Di Giacomo S, Briz O, Monte MJ, Sanchez-Vicente L, Abete L, Lozano E, Mazzanti G, Di Sotto A, Marin JJG. Chemosensitization of hepatocellular carcinoma cells to sorafenib by β-caryophyllene oxide-induced inhibition of ABC export pumps. Arch Toxicol 2019; 93:623-634. [PMID: 30659321 DOI: 10.1007/s00204-019-02395-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023]
Abstract
Several ATP-binding cassette (ABC) proteins reduce intracellular concentrations of antitumor drugs and hence weaken the response of cancer cells to chemotherapy. Accordingly, the inhibition of these export pumps constitutes a promising strategy to chemosensitize highly chemoresistant tumors, such as hepatocellular carcinoma (HCC). Here, we have investigated the ability of β-caryophyllene oxide (CRYO), a naturally occurring sesquiterpene component of many essential oils, to inhibit, at non-toxic doses, ABC pumps and improve the response of HCC cells to sorafenib. First, we have obtained a clonal subline (Alexander/R) derived from human hepatoma cells with enhanced multidrug resistance (MDR) associated to up-regulation (mRNA and protein) of MRP1 and MRP2. Analysis of fluorescent substrates export (flow cytometry) revealed that CRYO did not affect the efflux of fluorescein (MRP3, MRP4 and MRP5) but inhibited that of rhodamine 123 (MDR1) and calcein (MRP1 and MRP2). This ability was higher for CRYO than for other sesquiterpenes assayed. CRYO also inhibited sorafenib efflux, increased its intracellular accumulation (HPLC-MS/MS) and enhanced its cytotoxic response (MTT). For comparison, the effect of known ABC pumps inhibitors was also determined. They induced strong (diclofenac on MRPs), modest (verapamil on MDR1) or null (fumitremorgin C on BCRP) effect on sorafenib efflux and cytotoxicity. In the mouse xenograft model, the response to sorafenib treatment of subcutaneous tumors generated by mouse hepatoma Hepa 1-6/R cells, with marked MDR phenotype, was significantly enhanced by CRYO co-administration. In conclusion, at non-toxic dose, CRYO is able to chemosensitizating liver cancer cells to sorafenib by favoring its intracellular accumulation.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Oscar Briz
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J Monte
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Laura Sanchez-Vicente
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Elisa Lozano
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
16
|
Orlando UD, Castillo AF, Medrano MAR, Solano AR, Maloberti PM, Podesta EJ. Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 2019; 159:52-63. [DOI: 10.1016/j.bcp.2018.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
17
|
Awasthee N, Rai V, Verma SS, Sajin Francis K, Nair MS, Gupta SC. Anti-cancer activities of Bharangin against breast cancer: Evidence for the role of NF-κB and lncRNAs. Biochim Biophys Acta Gen Subj 2018; 1862:2738-2749. [DOI: 10.1016/j.bbagen.2018.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 11/27/2022]
|
18
|
miR-501 is upregulated in cervical cancer and promotes cell proliferation, migration and invasion by targeting CYLD. Chem Biol Interact 2018; 285:85-95. [DOI: 10.1016/j.cbi.2018.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/29/2022]
|