1
|
Lin Y, Liang Y, Wang D, Chang Y, Ma Q, Wang Y, He F, Xu D. A contrastive learning approach to integrate spatial transcriptomics and histological images. Comput Struct Biotechnol J 2024; 23:1786-1795. [PMID: 38707535 PMCID: PMC11068546 DOI: 10.1016/j.csbj.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid growth of spatially resolved transcriptomics technology provides new perspectives on spatial tissue architecture. Deep learning has been widely applied to derive useful representations for spatial transcriptome analysis. However, effectively integrating spatial multi-modal data remains challenging. Here, we present ConGcR, a contrastive learning-based model for integrating gene expression, spatial location, and tissue morphology for data representation and spatial tissue architecture identification. Graph convolution and ResNet were used as encoders for gene expression with spatial location and histological image inputs, respectively. We further enhanced ConGcR with a graph auto-encoder as ConGaR to better model spatially embedded representations. We validated our models using 16 human brains, four chicken hearts, eight breast tumors, and 30 human lung spatial transcriptomics samples. The results showed that our models generated more effective embeddings for obtaining tissue architectures closer to the ground truth than other methods. Overall, our models not only can improve tissue architecture identification's accuracy but also may provide valuable insights and effective data representation for other tasks in spatial transcriptome analyses.
Collapse
Affiliation(s)
- Yu Lin
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yanchun Liang
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, United States
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, United States
| | - Yan Wang
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Fei He
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Hao X, Shen Y, Liu J, Alexander A, Wu L, Xu Z, Yu L, Gao Y, Liu F, Chan HL, Li CH, Ding Y, Zhang W, Edwards DG, Chen N, Nasrazadani A, Ueno NT, Lim B, Zhang XHF. Solid tumour-induced systemic immunosuppression involves dichotomous myeloid-B cell interactions. Nat Cell Biol 2024; 26:1971-1983. [PMID: 39266726 DOI: 10.1038/s41556-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Solid tumours induce systemic immunosuppression that involves myeloid and T cells. B cell-related mechanisms remain relatively understudied. Here we discover two distinct patterns of tumour-induced B cell abnormality (TiBA; TiBA-1 and TiBA-2), both associated with abnormal myelopoiesis in the bone marrow. TiBA-1 probably results from the niche competition between pre-progenitor-B cells and myeloid progenitors, leading to a global reduction in downstream B cells. TiBA-2 is characterized by systemic accumulation of a unique early B cell population, driven by interaction with excessive neutrophils. Importantly, TiBA-2-associated early B cells foster the systemic accumulation of exhaustion-like T cells. Myeloid and B cells from the peripheral blood of patients with triple-negative breast cancer recapitulate the TiBA subtypes, and the distinct TiBA profile correlates with pathologic complete responses to standard-of-care immunotherapy. This study underscores the inter-patient diversity of tumour-induced systemic changes and emphasizes the need for treatments tailored to different B and myeloid cell abnormalities.
Collapse
Affiliation(s)
- Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Angela Alexander
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Che-Hsing Li
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - David G Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nan Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Azadeh Nasrazadani
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Bora Lim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Tkáčiková S, Marcin M, Bober P, Kacírová M, Šuliková M, Parnica J, Tóth D, Lenárt M, Radoňak J, Urdzík P, Fedačko J, Sabo J. B Cell Lymphocytes as a Potential Source of Breast Carcinoma Marker Candidates. Int J Mol Sci 2024; 25:7351. [PMID: 39000458 PMCID: PMC11242293 DOI: 10.3390/ijms25137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Despite advances in the genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein-level information. Nowadays breast cancer clinical treatment selection is based on the immunohistochemical (IHC) determination of four protein biomarkers: Estrogen Receptor 1 (ESR1), Progesterone Receptor (PGR), Human Epidermal Growth Factor Receptor 2 (HER2), and proliferation marker Ki-67. The prognostic correlation of tumor-infiltrating T cells has been widely studied in breast cancer, but tumor-infiltrating B cells have not received so much attention. We aimed to find a correlation between immunohistochemical results and a proteomic approach in measuring the expression of proteins isolated from B-cell lymphocytes in peripheral blood samples. Shotgun proteomic analysis was chosen for its key advantage over other proteomic methods, which is its comprehensive and untargeted approach to analyzing proteins. This approach facilitates better characterization of disease-associated changes at the protein level. We identified 18 proteins in B cell lymphocytes with a significant fold change of more than 2, which have promising potential to serve as breast cancer biomarkers in the future.
Collapse
Affiliation(s)
- Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Mária Kacírová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Michaela Šuliková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Jozef Parnica
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Dávid Tóth
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Marek Lenárt
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Ján Fedačko
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| |
Collapse
|
4
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
5
|
Balog JÁ, Horti-Oravecz K, Kövesdi D, Bozsik A, Papp J, Butz H, Patócs A, Szebeni GJ, Grolmusz VK. Peripheral immunophenotyping reveals lymphocyte stimulation in healthy women living with hereditary breast and ovarian cancer syndrome. iScience 2024; 27:109882. [PMID: 38799565 PMCID: PMC11126817 DOI: 10.1016/j.isci.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 (gpath(BRCA1/2)) represent genetic susceptibility for hereditary breast and ovarian cancer syndrome. Tumor-immune interactions are key contributors to breast cancer pathogenesis. Although earlier studies confirmed pro-tumorigenic immunological alterations in breast cancer patients, data are lacking in healthy carriers of gpath(BRCA1/2). Peripheral blood mononuclear cells of 66 women with or without germline predisposition or breast cancer were studied with a mass cytometry panel that identified 4 immune subpopulations of altered frequencies between healthy controls and healthy gpath(BRCA1) carriers, while no difference was observed in healthy gpath(BRCA2) carriers compared to controls. Moreover, 3 (one IgD-CD27+CD95+ B cell subpopulation and two CD45RA-CCR7+CD38+ CD4+ T cell subpopulations) out of these 4 subpopulations were also elevated in triple-negative breast cancer patients compared to controls. Our results reveal an activated peripheral immune phenotype in healthy carriers of gpath(BRCA1) that needs to be further elucidated to be leveraged in risk-reducing strategies.
Collapse
Affiliation(s)
- József Ágoston Balog
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Klaudia Horti-Oravecz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Semmelweis University, Doctoral School, 1085 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Janos Papp
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor János Szebeni
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, 6725 Szeged, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
6
|
Leon-Ferre RA, Whitaker KR, Suman VJ, Hoskin T, Giridhar KV, Moore RM, Al-Jarrad A, McLaughlin SA, Northfelt DW, Hunt KN, Conners AL, Moyer A, Carter JM, Kalari K, Weinshilboum R, Wang L, Ingle JN, Knutson KL, Ansell SM, Boughey JC, Goetz MP, Villasboas JC. Pre-treatment peripheral blood immunophenotyping and response to neoadjuvant chemotherapy in operable breast cancer. Breast Cancer Res 2024; 26:97. [PMID: 38858721 PMCID: PMC11165781 DOI: 10.1186/s13058-024-01848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Tumor immune infiltration and peripheral blood immune signatures have prognostic and predictive value in breast cancer. Whether distinct peripheral blood immune phenotypes are associated with response to neoadjuvant chemotherapy (NAC) remains understudied. METHODS Peripheral blood mononuclear cells from 126 breast cancer patients enrolled in a prospective clinical trial (NCT02022202) were analyzed using Cytometry by time-of-flight with a panel of 29 immune cell surface protein markers. Kruskal-Wallis tests or Wilcoxon rank-sum tests were used to evaluate differences in immune cell subpopulations according to breast cancer subtype and response to NAC. RESULTS There were 122 evaluable samples: 47 (38.5%) from patients with hormone receptor-positive, 39 (32%) triple-negative (TNBC), and 36 (29.5%) HER2-positive breast cancer. The relative abundances of pre-treatment peripheral blood T, B, myeloid, NK, and unclassified cells did not differ according to breast cancer subtype. In TNBC, higher pre-treatment myeloid cells were associated with lower pathologic complete response (pCR) rates. In hormone receptor-positive breast cancer, lower pre-treatment CD8 + naïve and CD4 + effector memory cells re-expressing CD45RA (TEMRA) T cells were associated with more extensive residual disease after NAC. In HER2 + breast cancer, the peripheral blood immune phenotype did not differ according to NAC response. CONCLUSIONS Pre-treatment peripheral blood immune cell populations (myeloid in TNBC; CD8 + naïve T cells and CD4 + TEMRA cells in luminal breast cancer) were associated with response to NAC in early-stage TNBC and hormone receptor-positive breast cancers, but not in HER2 + breast cancer. TRIAL REGISTRATION NCT02022202 . Registered 20 December 2013.
Collapse
Affiliation(s)
| | | | - Vera J Suman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tanya Hoskin
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Raymond M Moore
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Katie N Hunt
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Ann Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Krishna Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Liewei Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | |
Collapse
|
7
|
Azizi A, Mehdipour F, Samadi M, Rasolmali R, Talei AR, Ghaderi A. Atypical memory B cells increase in the peripheral blood of patients with breast cancer regardless of lymph node involvement. BMC Immunol 2024; 25:25. [PMID: 38702630 PMCID: PMC11067195 DOI: 10.1186/s12865-024-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.
Collapse
Affiliation(s)
- Atefeh Azizi
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Morteza Samadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Kresovich JK, O’Brien KM, Xu Z, Weinberg CR, Sandler DP, Taylor JA. Circulating Leukocyte Subsets Before and After a Breast Cancer Diagnosis and Therapy. JAMA Netw Open 2024; 7:e2356113. [PMID: 38358741 PMCID: PMC10870180 DOI: 10.1001/jamanetworkopen.2023.56113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Importance Changes in leukocyte composition often precede chronic disease onset. Patients with a history of breast cancer (hereinafter referred to as breast cancer survivors) are at increased risk for subsequent chronic diseases, but the long-term changes in peripheral leukocyte composition following a breast cancer diagnosis and treatment remain unknown. Objective To examine longitudinal changes in peripheral leukocyte composition in women who did and did not develop breast cancer and identify whether differences in breast cancer survivors were associated with specific treatments. Design, Setting, and Participants In this prospective cohort study, paired blood samples were collected from 2315 women enrolled in The Sister Study, a US-nationwide prospective cohort study of 50 884 women, at baseline (July 2003 to March 2009) and follow-up (October 2013 to March 2015) home visits, with a mean (SD) follow-up interval of 7.6 (1.4) years. By design, approximately half of the included women had been diagnosed and treated for breast cancer after enrollment and before the second blood draw. A total of 410 women were included in the present study, including 185 breast cancer survivors and 225 who remained free of breast cancer over a comparable follow-up period. Data were analyzed from April 21 to September 9, 2022. Exposures Breast cancer status and, among breast cancer survivors, cancer treatment type (chemotherapy, radiotherapy, endocrine therapy, or surgery). Main Outcomes and Measures Blood DNA methylation data were generated in 2019 using a genome-wide methylation screening tool and deconvolved to estimate percentages of 12 circulating leukocyte subsets. Results Of the 410 women included in the analysis, the mean (SD) age at enrollment was 56 (9) years. Compared with breast cancer-free women, breast cancer survivors had decreased percentages of circulating eosinophils (-0.45% [95% CI, -0.87% to -0.03%]; P = .03), total CD4+ helper T cells (-1.50% [95% CI, -2.56% to -0.44%]; P = .01), and memory B cells (-0.22% [95% CI, -0.34% to -0.09%]; P = .001) and increased percentages of circulating naive B cells (0.46% [95% CI, 0.17%-0.75%]; P = .002). In breast cancer survivor-only analyses, radiotherapy was associated with decreases in total CD4+ T cell levels, whereas chemotherapy was associated with increases in naive B cell levels. Surgery and endocrine therapy were not meaningfully associated with leukocyte changes. Conclusions and Relevance In this cohort study of 410 women, breast cancer survivors experienced lasting changes in peripheral leukocyte composition compared with women who remained free of breast cancer. These changes may be related to treatment with chemotherapy or radiotherapy and could influence future chronic disease risk.
Collapse
Affiliation(s)
- Jacob K. Kresovich
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| |
Collapse
|
9
|
Kametani Y, Ito R, Ohshima S, Manabe Y, Ohno Y, Shimizu T, Yamada S, Katano N, Kirigaya D, Ito K, Matsumoto T, Tsuda B, Kashiwagi H, Goto Y, Yasuda A, Maeki M, Tokeshi M, Seki T, Fukase K, Mikami M, Ando K, Ishimoto H, Shiina T. Construction of the systemic anticancer immune environment in tumour-bearing humanized mouse by using liposome-encapsulated anti-programmed death ligand 1 antibody-conjugated progesterone. Front Immunol 2023; 14:1173728. [PMID: 37492571 PMCID: PMC10364058 DOI: 10.3389/fimmu.2023.1173728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Tomoka Shimizu
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Soga Yamada
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Nagi Katano
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daiki Kirigaya
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Banri Tsuda
- Department of Palliative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hirofumi Kashiwagi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Yumiko Goto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | | | - Manabu Tokeshi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
10
|
Li M, Quintana A, Alberts E, Hung MS, Boulat V, Ripoll MM, Grigoriadis A. B Cells in Breast Cancer Pathology. Cancers (Basel) 2023; 15:1517. [PMID: 36900307 PMCID: PMC10000926 DOI: 10.3390/cancers15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
B cells have recently become a focus in breast cancer pathology due to their influence on tumour regression, prognosis, and response to treatment, besides their contribution to antigen presentation, immunoglobulin production, and regulation of adaptive responses. As our understanding of diverse B cell subsets in eliciting both pro- and anti-inflammatory responses in breast cancer patients increases, it has become pertinent to address the molecular and clinical relevance of these immune cell populations within the tumour microenvironment (TME). At the primary tumour site, B cells are either found spatially dispersed or aggregated in so-called tertiary lymphoid structures (TLS). In axillary lymph nodes (LNs), B cell populations, amongst a plethora of activities, undergo germinal centre reactions to ensure humoral immunity. With the recent approval for the addition of immunotherapeutic drugs as a treatment option in the early and metastatic settings for triple-negative breast cancer (TNBC) patients, B cell populations or TLS may resemble valuable biomarkers for immunotherapy responses in certain breast cancer subgroups. New technologies such as spatially defined sequencing techniques, multiplex imaging, and digital technologies have further deciphered the diversity of B cells and the morphological structures in which they appear in the tumour and LNs. Thus, in this review, we comprehensively summarise the current knowledge of B cells in breast cancer. In addition, we provide a user-friendly single-cell RNA-sequencing platform, called "B singLe cEll rna-Seq browSer" (BLESS) platform, with a focus on the B cells in breast cancer patients to interrogate the latest publicly available single-cell RNA-sequencing data collected from diverse breast cancer studies. Finally, we explore their clinical relevance as biomarkers or molecular targets for future interventions.
Collapse
Affiliation(s)
- Mengyuan Li
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | | | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Miu Shing Hung
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mercè Martí Ripoll
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Bitsouni V, Tsilidis V. Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response. J Theor Biol 2022; 539:111001. [PMID: 34998860 DOI: 10.1016/j.jtbi.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathematical and computational approach to investigate the complex interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as experimental dosages, are administered.
Collapse
Affiliation(s)
- Vasiliki Bitsouni
- Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece; School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| | - Vasilis Tsilidis
- School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| |
Collapse
|
12
|
Zemlin C, Stuhlert C, Schleicher JT, Wörmann C, Altmayer L, Lang M, Scherer LS, Thul IC, Müller C, Kaiser E, Stutz R, Goedicke-Fritz S, Ketter L, Zemlin M, Wagenpfeil G, Steffgen G, Solomayer EF. Longitudinal Assessment of Physical Activity, Fitness, Body Composition, Immunological Biomarkers, and Psychological Parameters During the First Year After Diagnosis in Women With Non-Metastatic Breast Cancer: The BEGYN Study Protocol. Front Oncol 2021; 11:762709. [PMID: 34737966 PMCID: PMC8560964 DOI: 10.3389/fonc.2021.762709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Moderate physical activity is associated with an improved prognosis and psychosocial outcome in breast cancer patients. Although exercise and physical activity are associated with multiple physiological and psychological effects, many of the underlying mechanisms remain obscure. The BEGYN study (Influence of physical activity in breast cancer patients on physiological and psychological parameters and on biomarkers) aims at identifying potential associations between the extent of physical activity, fitness, body composition, immunological biomarkers, psycho-emotional parameters, and the course of treatment during the first year after diagnosis of breast cancer. Methods The prospective observational BEGYN study will include 110 non-metastatic breast cancer patients. The patients will be assessed during a base line visit prior to the initiation of the antineoplastic therapy and after 3, 6, 9 and 12 months. The physical activity will be measured using a fitness tracker and a self-assessment diary during the entire study. Each visit will include the assessment of (i) cardiorespiratory fitness measured by spiroergometry, (ii) body composition, (iii) psycho-emotional parameters (quality of life, mental health, fatigue, depression, distress, anxiety, well-being), and (iv) extensive blood tests including routine laboratory, vitamin D, selenium and immunologically relevant biomarkers (e.g., leukocyte subpopulations and cytokine profiles). Discussion Whereas most studies investigating the influence of physical activity in breast cancer patients focus on specific activities for three months or less, the BEGYN study will quantify the daily physical activity and cardiorespiratory fitness of breast cancer patients based on objective measurements in the context of the oncological therapy for 12 months after diagnosis. The study will reveal potential associations between exercise, immune status and physical as well as psycho-emotional outcome and the clinical course of the disease. Moreover, complementary therapies such as Vit D and Selenium supplementation and parameters investigating the motivation of the patients are part of the study. Due to this holistic approach, the BEGYN study will guide towards confirmatory studies on the role of physical activity in breast cancer patients to develop individualized counselling regarding the recommended type and extent of exercise. Trial Registration This study has been registered at the German Clinical Trials Register DRKS00024829.
Collapse
Affiliation(s)
- Cosima Zemlin
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Caroline Stuhlert
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Julia Theresa Schleicher
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Wörmann
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura Altmayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Marina Lang
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura-Sophie Scherer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Ida Clara Thul
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Müller
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Elisabeth Kaiser
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Regine Stutz
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | | | - Laura Ketter
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Zemlin
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Homburg, Germany
| | - Georges Steffgen
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erich-Franz Solomayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
13
|
HER2-antigen-specific humoral immune response in breast cancer lymphocytes transplanted in hu-PBL hIL-4 NOG mice. Sci Rep 2021; 11:12798. [PMID: 34140620 PMCID: PMC8211648 DOI: 10.1038/s41598-021-92311-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
The status of humoral immunity of cancer patients is not clear compared to cellular immunity because the ability of specific antibody production is difficult to analyze in vitro. We previously developed a humanized mouse model to evaluate antigen-specific antibody production by transplanting human peripheral blood mononuclear cells (PBMCs) into NOG-hIL-4-Tg mice (hu-PBL hIL-4 NOG). In this study, these mice were transplanted with PBMCs derived from breast cancer patients (BC) and immunized with a human epidermal growth factor receptor 2 (HER2) peptide, CH401MAP, to analyze humoral immunity of BCs. The hu-PBL hIL-4 NOG mice recapitulated immune environment of BCs as the ratio of CD8+/CD4+T cells was lower and that of PD-1 + T cells was higher compared to healthy donors (HDs). Diverse clusters were detected in BC-mouse (BC-M) plasma components involving immunoglobulins and complements unlike HD-M, and there was a significant diversity in CH401MAP-specific IgG titers in BC-M. The number of B cell clones producing high CH401MAP-specific IgG was not increased by immunization in BC-M unlike HD-M. These results demonstrated that the humoral immunity of BCs appeared as diverse phenotypes different from HDs in hu-PBL hIL-4 NOG mice, which may provide important information for the study of personalized medicine.
Collapse
|
14
|
Li YX, Wang SM, Li CQ. Four-lncRNA immune prognostic signature for triple-negative breast cancer Running title: Immune lncRNAs predict prognosis of TNBC. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3939-3956. [PMID: 34198419 DOI: 10.3934/mbe.2021197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE We aimed to explore key immune-related long non-coding RNAs (lncRNAs) and their effect in predicting of prognosis of triple-negative breast cancer (TNBC). METHODS Four datasets of TNBC were downloaded from TCGA and GEO databases. ImmPort database was utilized to acquire immune-related mRNAs. Single sample gene set enrichment analysis (ssGSEA) and correlation analysis were utilized to screen immune-related lncRNAs. Univariate and multivariate Cox regression analyses were utilized to screen independent prognostic lncRNAs to establish prognostic risk model, and the model was evaluated by survival analysis and nomogram. Differential functions and immune cells infiltration in high and low risk group were analyzed by Gene set variation analysis and ssGSEA. Finally, competitive endogenous RNAs was constructed. RESULTS We revealed 62 immune-related lncRNAs, of which four lncRNAs (RP11-890B15.3, RP11-1024P17.1, MFI2-AS1 and RP11-180N14.1) had independent prognostic value. These four lncRNAs-based prognostic risk model could stratify the TNBC patients into high and low risk groups, and patients with high risk displayed unfavorable outcomes. Nomogram indicated that the prognostic model could indicate TNBC patients survival very well. We further found that high risk group showed significantly enriched immune response to tumor cell, humoral immune response and high infiltrating abundance of regulatory T cell, Type 2 T helper cell, eosinophil, etc. LncRNAs RP11-180N14.1, RP11-1024P17.1 and RP11-890B15.3 regulated more mRNAs by targeting various miRNAs. While MFI2-AS1 regulated three mRNAs by sponging miR-3150a-3p. CONCLUSION These four lncRNAs were prognostic biomarkers and could be possible therapeutic targets in TNBC.
Collapse
Affiliation(s)
- Yun-Xiang Li
- Department of Breast Surgery, the First Hospital of Shanxi Medical University, Taiyuan 03001, China
| | - Shi-Ming Wang
- Department of Breast Surgery, the First Hospital of Shanxi Medical University, Taiyuan 03001, China
| | - Chen-Quan Li
- Department of Breast Surgery, the First Hospital of Shanxi Medical University, Taiyuan 03001, China
| |
Collapse
|
15
|
Batalha S, Ferreira S, Brito C. The Peripheral Immune Landscape of Breast Cancer: Clinical Findings and In Vitro Models for Biomarker Discovery. Cancers (Basel) 2021; 13:1305. [PMID: 33804027 PMCID: PMC8001103 DOI: 10.3390/cancers13061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the deadliest female malignancy worldwide and, while much is known about phenotype and function of infiltrating immune cells, the same attention has not been paid to the peripheral immune compartment of breast cancer patients. To obtain faster, cheaper, and more precise monitoring of patients' status, it is crucial to define and analyze circulating immune profiles. This review compiles and summarizes the disperse knowledge on the peripheral immune profile of breast cancer patients, how it departs from healthy individuals and how it changes with disease progression. We propose this data to be used as a starting point for validation of clinically relevant biomarkers of disease progression and therapy response, which warrants more thorough investigation in patient cohorts of specific breast cancer subtypes. Relevant clinical findings may also be explored experimentally using advanced 3D cellular models of human cancer-immune system interactions, which are under intensive development. We review the latest findings and discuss the strengths and limitations of such models, as well as the future perspectives. Together, the scientific advancement of peripheral biomarker discovery and cancer-immune crosstalk in breast cancer will be instrumental to uncover molecular mechanisms and putative biomarkers and drug targets in an all-human setting.
Collapse
Affiliation(s)
- Sofia Batalha
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Ferreira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof Lima Basto, 1099-023 Lisboa, Portugal;
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
16
|
Lipid Metabolism in Tumor-Associated B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:133-147. [PMID: 33740248 DOI: 10.1007/978-981-33-6785-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breakthroughs have been made in the cancer immunotherapy field focusing on utilizing T cells' antitumor immunity, and the lipid metabolism of tumor-associated B cells is not well studied compared to T cells. Accumulating evidence suggested that B cells also play important roles in tumor biology and antitumor immunity, especially the germinal center B cells that present in the tumor-related tertiary lymphoid structures. Due to scarce studies on lipid metabolisms of tumor-associated B cells, this chapter mainly summarized findings on B cell lipid metabolism and discussed B cell development and major transcription factors, tumor-associated B cell populations and their potential functions in antitumor immunity, fatty acid oxidation in germinal center B cells, and tumor microenvironment factors that potentially affect B cell lipid metabolism, focusing on hypoxia and nutrients competition, as well as lipid metabolites that affect B cell function, including cholesterol, geranylgeranyl pyrophosphate, oxysterols, and short-chain fatty acids.
Collapse
|
17
|
Abstract
IMPORTANCE Higher overall leukocyte counts in women may be associated with increased risk of breast cancer, but the association of specific leukocyte subtypes with breast cancer risk remains unknown. OBJECTIVE To determine associations between circulating leukocyte subtypes and risk of breast cancer. DESIGN, SETTING, AND PARTICIPANTS Between 2003 and 2009, the Sister Study enrolled 50 884 women who had a sister previously diagnosed with breast cancer but were themselves breast cancer free. A case-cohort subsample was selected in July 2014 from the full Sister Study cohort. Blood samples were obtained at baseline, and women were followed up through October 2016. Data analysis was performed in April 2019. MAIN OUTCOMES AND MEASURES The main outcome was the development of breast cancer in women. Whole-blood DNA methylation was measured, and methylation values were deconvoluted using the Houseman method to estimate proportions of 6 leukocyte subtypes (B cells, natural killer cells, CD8+ and CD4+ T cells, monocytes, and granulocytes). Leukocyte subtype proportions were dichotomized at their population median value, and Cox proportional hazard models were used to estimate associations with breast cancer. RESULTS Among 2774 non-Hispanic white women included in the analysis (mean [SD] age at enrollment, 56.6 [8.8] years), 1295 women were randomly selected from the full cohort (of whom 91 developed breast cancer) along with an additional 1479 women who developed breast cancer during follow-up (mean [SD] time to diagnosis, 3.9 [2.2] years). Circulating proportions of B cells were positively associated with later breast cancer (hazard ratio [HR], 1.17; 95% CI, 1.01-1.36; P = .04). Among women who were premenopausal at blood collection, the association between B cells and breast cancer was significant (HR, 1.38; 95% CI, 1.05-1.82; P = .02), and an inverse association for circulating proportions of monocytes was found (HR, 0.75; 95% CI, 0.57-0.99; P = .05). Among all women, associations between leukocyte subtypes and breast cancer were time dependent: higher monocyte proportions were associated with decreased near-term risk (within 1 year of blood collection, HR, 0.62; 95% CI, 0.43-0.89; P = .01), whereas higher B cell proportions were associated with increased risk 4 or more years after blood collection (HR, 1.38; 95% CI, 1.15-1.67; P = .001). CONCLUSIONS AND RELEVANCE Circulating leukocyte profiles may be altered before clinical diagnoses of breast cancer and may be time-dependent markers for breast cancer risk, particularly among premenopausal women.
Collapse
Affiliation(s)
- Jacob K. Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
18
|
Morandi F, Airoldi I, Marimpietri D, Bracci C, Faini AC, Gramignoli R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells 2019; 8:E1527. [PMID: 31783629 PMCID: PMC6953043 DOI: 10.3390/cells8121527] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
CD38 is a multifunctional cell surface protein endowed with receptor/enzymatic functions. The protein is generally expressed at low/intermediate levels on hematological tissues and some solid tumors, scoring the highest levels on plasma cells (PC) and PC-derived neoplasia. CD38 was originally described as a receptor expressed by activated cells, mainly T lymphocytes, wherein it also regulates cell adhesion and cooperates in signal transduction mediated by major receptor complexes. Furthermore, CD38 metabolizes extracellular NAD+, generating ADPR and cyclic ADPR. This ecto-enzyme controls extra-cellular nucleotide homeostasis and intra-cellular calcium fluxes, stressing its relevance in multiple physiopathological conditions (infection, tumorigenesis and aging). In clinics, CD38 was adopted as a cell activation marker and in the diagnostic/staging of leukemias. Quantitative surface CD38 expression by multiple myeloma (MM) cells was the basic criterion used for therapeutic application of anti-CD38 monoclonal antibodies (mAbs). Anti-CD38 mAbs-mediated PC depletion in autoimmunity and organ transplants is currently under investigation. This review analyzes different aspects of CD38's role in regulatory cell populations and how these effects are obtained. Characterizing CD38 functional properties may widen the extension of therapeutic applications for anti-CD38 mAbs. The availability of therapeutic mAbs with different effects on CD38 enzymatic functions may be rapidly translated to immunotherapeutic strategies of cell immune defense.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Irma Airoldi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Danilo Marimpietri
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
- CeRMS, University of Torino, 10126 Torino, Italy
| | - Angelo Corso Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
19
|
Milanese JS, Tibiche C, Zou J, Meng Z, Nantel A, Drouin S, Marcotte R, Wang E. Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis Oncol 2019; 3:28. [PMID: 31701019 PMCID: PMC6825127 DOI: 10.1038/s41698-019-0100-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Germline variants such as BRCA1/2 play an important role in tumorigenesis and clinical outcomes of cancer patients. However, only a small fraction (i.e., 5-10%) of inherited variants has been associated with clinical outcomes (e.g., BRCA1/2, APC, TP53, PTEN and so on). The challenge remains in using these inherited germline variants to predict clinical outcomes of cancer patient population. In an attempt to solve this issue, we applied our recently developed algorithm, eTumorMetastasis, which constructs predictive models, on exome sequencing data to ER+ breast (n = 755) cancer patients. Gene signatures derived from the genes containing functionally germline variants significantly distinguished recurred and non-recurred patients in two ER+ breast cancer independent cohorts (n = 200 and 295, P = 1.4 × 10-3). Furthermore, we compared our results with the widely known Oncotype DX test (i.e., Oncotype DX breast cancer recurrence score) and outperformed prediction for both high- and low-risk groups. Finally, we found that recurred patients possessed a higher rate of germline variants. In addition, the inherited germline variants from these gene signatures were predominately enriched in T cell function, antigen presentation, and cytokine interactions, likely impairing the adaptive and innate immune response thus favoring a pro-tumorigenic environment. Hence, germline genomic information could be used for developing non-invasive genomic tests for predicting patients' outcomes in breast cancer.
Collapse
Affiliation(s)
| | - Chabane Tibiche
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Jinfeng Zou
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Zhigang Meng
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Chinese Academy of Agricultural Science, No. 12 Zhongguangcun South Street, Haidian District, Beijing, 100086 China
| | - Andre Nantel
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Simon Drouin
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Richard Marcotte
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue W, Montreal, QC H3A 1A3 Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute and Arnie Charbonneau Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
20
|
Aronov DA, Zhukov VV, Semushina SG, Moiseeva EV. Imbalances in cellular immunological parameters in blood predetermine tumor onset in a natural mouse model of breast cancer. Cancer Immunol Immunother 2019; 68:721-729. [PMID: 30741325 PMCID: PMC11028144 DOI: 10.1007/s00262-019-02312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Abstract
The development of new approaches to breast cancer (BC) early diagnosis is an important objective of modern oncology. Although the role of the immune system in cancer initiation process was experimentally well established, the prognostic value of cellular blood immunological parameters (CBIPs) for BC onset prediction was not demonstrated either in clinics or in mouse models. In this study, we focused on revealing informative CBIPs for mammary cancer (MC) onset prediction in the BLRB/BYRB mouse model with a high incidence of natural MC development. Blood samples were collected from 80 aging females of these original mouse strains, 12 basic CBIPs were estimated by flow cytometry. Then mice were followed up for 28 weeks, and the outcome of females (MC diagnosis, death without MC or MC-free survival) was registered. We estimated the patterns of changes in CBIPs with age and in accordance with the outcome. An increasing imbalance in 11 CBIPs during natural aging of females clearly resembled human immunosenescence phenomenon and several patterns corresponded to the results obtained on cancer-free members of BC-affected families. We stratified heterogeneous female population into middle-aged and old subgroups. Low NK-cell levels in middle-aged mice and low B-cell along with high T-helper levels in old mice distinguished females with developed MC from the other groups. We found a reliable correlation of several CBIPs with age at MC diagnosis and survival of cancer-bearing females. Thus, we demonstrated the predictive potential of CBIPs as a basis for the development of prognostic models for BC onset in clinics.
Collapse
Affiliation(s)
- Dmitry A Aronov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | - Viacheslav V Zhukov
- Peoples' Friendship University of Russia (RUDN University), ul. Miklukho-Maklaya, 6, Moscow, 117198, Russia
| | - Svetlana G Semushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Ekaterina V Moiseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| |
Collapse
|
21
|
Trintinaglia L, Bandinelli LP, Grassi-Oliveira R, Petersen LE, Anzolin M, Correa BL, Schuch JB, Bauer ME. Features of Immunosenescence in Women Newly Diagnosed With Breast Cancer. Front Immunol 2018; 9:1651. [PMID: 30061900 PMCID: PMC6055359 DOI: 10.3389/fimmu.2018.01651] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/04/2018] [Indexed: 11/28/2022] Open
Abstract
Adults exposed to childhood maltreatment have increased stress reactivity. This profile is associated with dysregulation of the immune system, including enhanced inflammatory reactions and accelerated senescence. Subjects exposed to ear stress have increased risk for several age-related diseases, including cardiovascular disease, type II diabetes, and cancer. Although previous studies have reported immune changes in advanced cancer, very little information is available regarding early stage breast cancer. Here, 29 patients with breast cancer were recruited: 15 with history of childhood maltreatment (CM+) and 14 without history (CM−). Twenty-seven healthy women without CM were selected as the control group. Peripheral blood was collected and lymphocyte subsets phenotyped by multi-color flow cytometry (B cells, CD4+ T, CD8+ T, natural killer cells, activated T cells, regulatory T cells, and senescence-associated T cells). Because human cytomegalovirus (CMV) was associated with signatures of early senescence, the CMV serology was determined by ELISA. None of the subjects had IgM reactivity to CMV, excluding acute viral infection. There was a higher proportion of patients with increased CMV IgG levels in the CM+ group as compared to CM− or controls. Different stages of T-cell differentiation can be determined based on the cell-surface expression of the costimulatory molecules CD27 and CD28: ear (CD27+CD28+), intermediate-differentiated (CD27−CD28+), and late-differentiated or senescent T cells (CD27−CD28−). After adjusting for age and education, ear T cells (CD27+CD28+) were found reduced in CM+ and CM− patients (p < 0.0001). In contrast, intermediate-differentiated T cells (CD27−CD28+; p < 0.0001), senescent T cells (CD27−CD28−; p < 0.0001), and exhausted T cells (CD8+CD27−CD28−PD1+; p < 0.0001) were found expanded in both CM+ and CM− groups. Our data suggest that features of immunosenescence are associated with newly diagnosed breast cancer, regardless of the CM history.
Collapse
Affiliation(s)
- Lauren Trintinaglia
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Poitevin Bandinelli
- Developmental Cognitive Neuroscience Laboratory (DCNL), School of Health Sciences, Porto Alegre, Brazil
- Centro Universitário Ritter dos Reis, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Developmental Cognitive Neuroscience Laboratory (DCNL), School of Health Sciences, Porto Alegre, Brazil
| | - Laura Esteves Petersen
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marcelo Anzolin
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Jaqueline Bohrer Schuch
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunosenescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- *Correspondence: Moisés Evandro Bauer,
| |
Collapse
|