1
|
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem 2024; 123:179-219. [PMID: 39181622 DOI: 10.1016/bs.acc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Niţă I, Niţipir C, Toma ŞA, Limbău AM, Pîrvu E, Bădărău IA. The importance of androgen receptors in breast cancer. Med Pharm Rep 2021; 94:273-281. [PMID: 34430848 DOI: 10.15386/mpr-1842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/05/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background and aim Breast cancer (BC) is the most common malignancy among women worldwide, and one of the leading causes of cancer-related deaths in females. For the breast malignant tumors there are numerous targeted therapies, depending on the receptors expressed. Regulating the process of epithelial-mesenchyme transcription, the steroid nuclear receptors are important in invasion and progression of BC cells. Till now, it is known that androgen receptor (AR) is present in about 60-80% of BC cells but, unfortunately, there is no targeted therapy available yet. Methods We revised the recent literature that included the AR mechanism of action in patients diagnosed with breast cancer, the preclinical, retrospective and clinical studies and the aspects related to the prognosis of these patients, depending on the molecular subtype. Results A total of 12 articles were eligible for this review. AR positivity was assessed using immunohistochemistry. Herein, neither 1 nor 10% cut-points were robustly prognostic. AR was an independent prognostic marker of BC outcome, especially in triple negative BC group. Conclusion AR is a potential targeted pathway which can improve the prognostic of AR positive patients with BC. Further preclinical and clinical studies are necessary to clarify the mechanism of action and to establish the drugs which can be used, either alone or in combination.
Collapse
Affiliation(s)
- Irina Niţă
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Medical Oncology Department, Elias University Emergency Hospital, Bucharest, Romania
| | - Cornelia Niţipir
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Medical Oncology Department, Elias University Emergency Hospital, Bucharest, Romania
| | | | | | - Edvina Pîrvu
- Medical Oncology Department, "Colţea" Clinical Hospital, Bucharest, Romania
| | | |
Collapse
|
3
|
Qu X, Li Q, Tu S, Yang X, Wen W. ELF5 inhibits the proliferation and invasion of breast cancer cells by regulating CD24. Mol Biol Rep 2021; 48:5023-5032. [PMID: 34146197 DOI: 10.1007/s11033-021-06495-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
E74-like factor five (ELF5) is a basic transcription factor that plays a key role in breast tissue and gland development. However, the molecular mechanism of ELF5 in breast cancer cells has not been elucidated. In this study, we examined the effect of ELF5 on the human breast cancer cell lines MCF-7 and T47D and confirmed that ELF5 can inhibit cell proliferation, migration and invasion. In further research, the relationship between ELF5 and CD24 was characterized in breast cancer cells. We found that CD24 was a target gene of ELF5 through chromatin immunoprecipitation (ChIP) -Sequence assays, and proved that ELF5 could bind to the ETS cis-element on the proximal promoter of the CD24 gene and regulate the expression of CD24. Moreover, overexpression of ELF5 in MCF-7 cells significantly increased both the mRNA and protein levels of CD24, while knockdown of CD24 expression restored cell proliferation, migration and invasion through adaptive ELF5 expression in MCF-7 cells. Therefore, these data suggest that ELF5 inhibits migration and invasion of breast cancer cells by regulating CD24 expression, which make provides a molecular mechanism for ELF5 to inhibit breast cancer from a new perspective and provides further theoretical support for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Xinjian Qu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Qianqian Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xiaocheng Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Wen Wen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
4
|
Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, Xiao J, Gao J, Zhang D, Ke X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front Cell Dev Biol 2021; 9:647763. [PMID: 34055778 PMCID: PMC8155602 DOI: 10.3389/fcell.2021.647763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Yulang Huang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Lifang Chen
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Zongming Feng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Weixin Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jian Xiao
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Debao Zhang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Niță I, Nițipir C, Toma ȘA, Limbău AM, Pîrvu E, Bădărău IA, Suciu I, Suciu G, Manolescu LSC. Histological Aspects and Quantitative Assessment of Ki67 as Prognostic Factors in Breast Cancer Patients: Result from a Single-Center, Cross Sectional Study. ACTA ACUST UNITED AC 2020; 56:medicina56110600. [PMID: 33182401 PMCID: PMC7698204 DOI: 10.3390/medicina56110600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
Background and objectives: Our aim is to explore the relationship between the levels of protein encoded by Ki67 and the histopathological aspects regarding the overall survival and progression-free survival in a single university center. A secondary objective was to examine other factors that can influence these endpoints. New approaches to the prognostic assessment of breast cancer have come from molecular profiling studies. Ki67 is a nuclear protein associated with cell proliferation. Together with the histological type and tumor grade, it is used to appreciate the aggressiveness of the breast tumors. Materials and Methods: We conducted a retrospective single-institution study, at Elias University Emergency Hospital, Bucharest, Romania, in which we enrolled women with stage I to III breast cancer. The protocol was amended to include the immunohistochemistry determination of Ki67 and the histological aspects. The methodology consisted in using a Kaplan-Meier analysis for the entire sample and restricted mean survival time up to 36 months. Results: Both lower Ki67 and low tumor grade are associated with better prognosis in terms of overall survival (OS) and progression-free survival (PFS) for our patients' cohort. In our group, the histological type did not impact the time to progression or survival. Conclusions: Both overall survival and progression-free survival may be influenced by the higher value of Ki67 and less differentiated tumors. Further studies are needed in order to establish if the histologic type may impact breast cancer prognostic, probably together with other histologic and molecular markers.
Collapse
Affiliation(s)
- Irina Niță
- Faculty of Medicine, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (I.A.B.)
- Clinic of Oncology, Elias Universitary Emergency Hospital, 011461 Bucharest, Romania
- Correspondence: (I.N.); (L.S.C.M.); Tel.: +40-722515917 (I.N.); +40-723699253 (L.S.C.M.)
| | - Cornelia Nițipir
- Faculty of Medicine, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (I.A.B.)
- Clinic of Oncology, Elias Universitary Emergency Hospital, 011461 Bucharest, Romania
| | | | - Alexandra Maria Limbău
- Dermatology Department, Municipal Hospital Curtea de Argeș, 115300 Curtea de Argeș, Romania;
| | - Edvina Pîrvu
- Medical Oncology Department, Clinical Hospital Colţea, 927180 Bucharest, Romania;
| | - Ioana Anca Bădărău
- Faculty of Medicine, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (I.A.B.)
| | - Ioana Suciu
- BEIA consult International, Peroni 16, 041386 Bucharest, Romania; (I.S.); (G.S.)
| | - George Suciu
- BEIA consult International, Peroni 16, 041386 Bucharest, Romania; (I.S.); (G.S.)
| | - Loredana Sabina Cornelia Manolescu
- Faculty of Medicine, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (I.A.B.)
- Correspondence: (I.N.); (L.S.C.M.); Tel.: +40-722515917 (I.N.); +40-723699253 (L.S.C.M.)
| |
Collapse
|
6
|
Kallarackal J, Burger F, Bianco S, Romualdi A, Schad M. A 3-gene biomarker signature to predict response to taxane-based neoadjuvant chemotherapy in breast cancer. PLoS One 2020; 15:e0230313. [PMID: 32196521 PMCID: PMC7083332 DOI: 10.1371/journal.pone.0230313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/26/2020] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide, affecting one in eight women in their lifetime. Taxane-based chemotherapy is routinely used in the treatment of breast cancer. The purpose of this study was to develop and validate a predictive biomarker to improve the benefit/risk ratio for that cytotoxic chemotherapy. We explicitly strived for a biomarker that enables secure translation into clinical practice. We used genome-wide gene expression data of the Hatzis et al. discovery cohort of 310 patients for biomarker development and three independent cohorts with a total of 567 breast cancer patients for validation. We were able to develop a biomarker signature that consists of just the three gene products ELF5, SCUBE2 and NFIB, measured on RNA level. Compared to Hatzis et al., we achieved a significant improvement in predicting responders and non-responders in the Hatzis et al. validation cohort with an area under the receiver operating characteristics curve of 0.73 [95% CI, 69%—77%]. Moreover, we could confirm the performance of our biomarker on two further independent validation cohorts. The overall performance on all three validation cohorts expressed as area under the receiver operating characteristics curve was 0.75 [95% CI, 70%—80%]. At the clinically relevant classifier’s operation point to optimize the exclusion of non-responders, the biomarker correctly predicts three out of four patients not responding to neoadjuvant taxane-based chemotherapy, independent of the breast cancer subtype. At the same time, the response rate in the group of predicted responders increased to 42% compared to 23% response rate in all patients of the validation cohorts.
Collapse
|
7
|
Hu Y, Yan Y, Xu Y, Yang H, Fang L, Liu Y, Li X, Li Q, Yan H. Expression and clinical significance of WWOX, Elf5, Snail1 and EMT related factors in epithelial ovarian cancer. Oncol Lett 2020; 19:1281-1290. [PMID: 31966058 PMCID: PMC6956397 DOI: 10.3892/ol.2019.11213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Expression and clinical significance of WW domain-containing oxidoreductase (WWOX), Elf5, Snail1 and epithelial-mesenchymal transition (EMT) related factors in epithelial ovarian cancer were investigated. Ovarian cancer tissues of 300 epithelial ovarian cancer patients and the adjacent normal tissues were analyzed. Immunohistochemical method was used to detect the expressions of WWOX, Elf5, Snail1 and EMT marker molecules in the specimens. The relationship between the indicators and clinicopathological parameters, and prognosis of patients with ovarian cancer was analyzed. The relationship between WWOX, Elf5, Snail1 and EMT marker molecules E-cadherin, N-cadherin and vimentin in ovarian cancer tissues was analyzed. The expression levels of WWOX, Elf5, Snail1 and EMT marker molecules in epithelial ovarian cancer tissues were significantly different from those in adjacent normal tissues, and were related to surgical pathological stage, pathological grade and lymph node metastasis. High expressions of WWOX and Elf5 were related to the survival rate of patients. The survival rate of patients with positive expression was significantly higher than that of negative expression. FIGO stage, pathological grade, lymph node metastasis and expression of WWOX and Elf5 were all independent factors affecting postoperative prognosis in ovarian cancer patients. In conclusion, the expression levels of WWOX, Elf5, Snail1 and EMT related factors in epithelial ovarian cancer tissues are consistent and different. The expression levels of WWOX and Elf5 are related to the survival and prognosis of patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yakun Hu
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yuchen Yan
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yang Xu
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - He Yang
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lisha Fang
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yongli Liu
- Department of Gynaecology, Xuzhou No. 1 People's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xin Li
- Department of Gynaecology, Xuzhou Maternal and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qiang Li
- Xuzhou Medical University Science Park Co. Ltd., Xuzhou, Jiangsu 221000, P.R. China
| | - Hongchao Yan
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Xuzhou Medical University Science Park Co. Ltd., Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
8
|
Guo M, Sinha S, Wang SM. Coupled Genome-Wide DNA Methylation and Transcription Analysis Identified Rich Biomarkers and Drug Targets in Triple-Negative Breast Cancer. Cancers (Basel) 2019; 11:E1724. [PMID: 31690011 PMCID: PMC6896154 DOI: 10.3390/cancers11111724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 02/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has poor clinical prognosis. Lack of TNBC-specific biomarkers prevents active clinical intervention. We reasoned that TNBC must have its specific signature due to the lack of three key receptors to distinguish TNBC from other types of breast cancer. We also reasoned that coupling methylation and gene expression as a single unit may increase the specificity for the detected TNBC signatures. We further reasoned that choosing the proper controls may be critical to increasing the sensitivity to identify TNBC-specific signatures. Furthermore, we also considered that specific drugs could target the detected TNBC-specific signatures. We developed a system to identify potential TNBC signatures. It consisted of (1) coupling methylation and expression changes in TNBC to identify the methylation-regulated signature genes for TNBC; (2) using TPBC (triple-positive breast cancer) as the control to detect TNBC-specific signature genes; (3) searching in the drug database to identify those targeting TNBC signature genes. Using this system, we identified 114 genes with both altered methylation and expression, and 356 existing drugs targeting 10 of the 114 genes. Through docking and molecular dynamics simulation, we determined the structural basis between sapropterin, a drug used in the treatment of tetrahydrobiopterin deficiency, and PTGS2, a TNBC signature gene involved in the conversion of arachidonic acid to prostaglandins. Our study reveals the existence of rich TNBC-specific signatures, and many can be drug target and biomarker candidates for clinical applications.
Collapse
Affiliation(s)
- Maoni Guo
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
9
|
C1orf106, an innate immunity activator, is amplified in breast cancer and is required for basal-like/luminal progenitor fate decision. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1229-1242. [PMID: 31376015 DOI: 10.1007/s11427-019-9570-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023]
Abstract
Basal-like breast cancer with a luminal progenitor gene expression profile is an aggressive subtype of breast cancer with a poorer prognosis compared with other subtypes. However, genes that specifically promote basal-like breast cancer development remain largely unknown. Here, we report that a novel gene C1orf106 plays an important role in maintaining the feature of basal-like/luminal progenitors. C1orf106 is frequently amplified and overexpressed in basal-like breast cancer and is associated with a poor outcome in patients. In human TCGA database, C1orf106 expression was correlated with upregulation of ELF5 and downregulation of GATA3, two transcription factors that regulate mammary gland stem cell fate. Enhanced expression of C1orf106 promotes tumor progression and expression of basal-like/luminal progenitor marker ELF5; depletion of C1orf106 suppresses tumorigenesis and expression of basal-like/luminal progenitor marker GATA3. These findings suggest that C1orf106 maintains the basal-like/luminal progenitor character through balancing the expression of ELF5 and GATA3. Taken together, we demonstrated that C1orf106 is an important regulator for basal-like/luminal progenitors and targeting C1orf106 is of therapeutic value for breast cancer.
Collapse
|
10
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|