1
|
Lucía Reviglio A, Ariel Alaniz G, Cecilia Liaudat A, Alustiza F, Santo M, Otero L, Fernández L. Evaluation of the antitumor activity of albendazole using Langmuir-Blodgett monolayers as surface mediated drug delivery system. Int J Pharm 2024; 663:124586. [PMID: 39147249 DOI: 10.1016/j.ijpharm.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.
Collapse
Affiliation(s)
- Ana Lucía Reviglio
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Gustavo Ariel Alaniz
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580 Marcos Juárez, Argentina
| | - Marisa Santo
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luis Otero
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| | - Luciana Fernández
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
2
|
Malla R, Viswanathan S, Makena S, Kapoor S, Verma D, Raju AA, Dunna M, Muniraj N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers (Basel) 2024; 16:1463. [PMID: 38672545 PMCID: PMC11048531 DOI: 10.3390/cancers16081463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer persists as a global challenge necessitating continual innovation in treatment strategies. Despite significant advancements in comprehending the disease, cancer remains a leading cause of mortality worldwide, exerting substantial economic burdens on healthcare systems and societies. The emergence of drug resistance further complicates therapeutic efficacy, underscoring the urgent need for alternative approaches. Drug repurposing, characterized by the utilization of existing drugs for novel clinical applications, emerges as a promising avenue for addressing these challenges. Repurposed drugs, comprising FDA-approved (in other disease indications), generic, off-patent, and failed medications, offer distinct advantages including established safety profiles, cost-effectiveness, and expedited development timelines compared to novel drug discovery processes. Various methodologies, such as knowledge-based analyses, drug-centric strategies, and computational approaches, play pivotal roles in identifying potential candidates for repurposing. However, despite the promise of repurposed drugs, drug repositioning confronts formidable obstacles. Patenting issues, financial constraints associated with conducting extensive clinical trials, and the necessity for combination therapies to overcome the limitations of monotherapy pose significant challenges. This review provides an in-depth exploration of drug repurposing, covering a diverse array of approaches including experimental, re-engineering protein, nanotechnology, and computational methods. Each of these avenues presents distinct opportunities and obstacles in the pursuit of identifying novel clinical uses for established drugs. By examining the multifaceted landscape of drug repurposing, this review aims to offer comprehensive insights into its potential to transform cancer therapeutics.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Sathiyapriya Viswanathan
- Department of Biochemistry, ACS Medical College and Hospital, Chennai 600007, Tamil Nadu, India;
| | - Sree Makena
- Maharajah’s Institute of Medical Sciences and Hospital, Vizianagaram 535217, Andhra Pradesh, India
| | - Shruti Kapoor
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Deepak Verma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Manikantha Dunna
- Center for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500085, Telangana, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
3
|
Fatima I, Ahmad R, Barman S, Gowrikumar S, Pravoverov K, Primeaux M, Fisher KW, Singh AB, Dhawan P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br J Cancer 2024; 130:1046-1058. [PMID: 38278978 PMCID: PMC10951408 DOI: 10.1038/s41416-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
4
|
Song B, Park EY, Kim KJ, Ki SH. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022; 14:cancers14194601. [PMID: 36230527 PMCID: PMC9559625 DOI: 10.3390/cancers14194601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Although non-prescription anthelmintics are often used for cancer treatment, there is a lack of information regarding their anti-cancer effects in clinical settings. The aims of our review are to describe the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. The results of the current review illustrate the potential development of anthelmintics as a useful strategy for cancer treatment based on much preclinical evidence. Furthermore, they suggest that more rigorous studies on whole anti-cancer pathways and development strategies, including formulations, could result in significantly enhanced anti-cancer effects of benzimidazoles as a repurposed cancer therapy in clinical settings. Abstract Benzimidazoles have shown significant promise for repurposing as a cancer therapy. The aims of this review are to investigate the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. This review included studies on the anti-cancer effects of 11 benzimidazoles. Largely divided into three parts, i.e., preclinical anti-cancer effects, clinical anti-cancer effects, and pharmacokinetic properties, we examine the characteristics of each benzimidazole and attempt to elucidate its key properties. Although many studies have demonstrated the anti-cancer effects of benzimidazoles, there is limited evidence regarding their effects in clinical settings. This might be because the clinical trials conducted using benzimidazoles failed to restrict their participants with specific criteria including cancer entities, cancer stages, and genetic characteristics of the participants. In addition, these drugs have limitations including low bioavailability, which results in insufficient plasma concentration levels. Additional studies on whole anti-cancer pathways and development strategies, including formulations, could result significant enhancements of the anti-cancer effects of benzimidazoles in clinical situations.
Collapse
Affiliation(s)
- Bomi Song
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
| | - Kwang Joon Kim
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| | - Sung Hwan Ki
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| |
Collapse
|
5
|
Secretion into Milk of the Main Metabolites of the Anthelmintic Albendazole Is Mediated by the ABCG2/BCRP Transporter. Antimicrob Agents Chemother 2022; 66:e0006222. [PMID: 35736132 PMCID: PMC9295555 DOI: 10.1128/aac.00062-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.
Collapse
|
6
|
Ghaferi M, Zahra W, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhancing the efficacy of albendazole for liver cancer treatment using mesoporous silica nanoparticles: an in vitro study. EXCLI JOURNAL 2022; 21:236-249. [PMID: 35221842 PMCID: PMC8859643 DOI: 10.17179/excli2021-4491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
The present study aimed to synthesize albendazole (ABZ)-loaded Mobil Composition of Matter No. 41 (MCM-41 NPs) to increase the efficacy of the drug against liver cancer. ABZ was loaded into MCM-41 NPs, and after in vitro characterization, such as size, size distribution, zeta potential, morphology, chemical composition, thermal profile, drug release, surface and pore volume, and pore size, their biological effects were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) cell migration assays. The results demonstrated that monodispersed and spherical NPs with a size of 220 ± 11.5 and 293 ± 8.7 nm, for MCM-41 NPs and ABZ-loaded MCM-41 NPs, respectively, and drug loading efficiency of 30 % were synthesized. ABZ was loaded physically into MCM-41 NPs, leading to a decrease in surface volume, pore size, and pore volume. Also, MCM-41 NPs could increase the cytotoxicity effects of ABZ by 2.9-fold (IC50 = 23 and 7.9 µM for ABZ and ABZ-loaded MCM-41 NPs, respectively). In addition, both ABZ and ABZ-loaded MCM-41 NPs could restrain the cell migration by 12 %. Overall, the results of the present study suggest evaluating the potency of MCM-41 NPs, as a potent nanoplatform, for ABZ delivery in vivo environment. See also the Graphical Abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Warda Zahra
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Liu S, Liu H, Sun H, Deng S, Yue L, Weng Z, Yang J, Zuo B, He Y, Zhang B. (cRGD)2 peptides modified nanoparticles increase tumor-targeting therapeutic effects by co-delivery of albendazole and iodine-131. Anticancer Drugs 2022; 33:19-29. [PMID: 34261920 DOI: 10.1097/cad.0000000000001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Albendazole (ABZ), a clinical antiparasitic drug, has shown potential antitumor effects in various tumors. Herein, we prepared dimeric cRGD [(cRGD)2] modified human serum albumin (HSA) nanosystem to co-delivery of albendazole (ABZ) and iodine-131 (131I) for chemoradiotherapy of triple-negative breast cancer (TNBC). HSA@ABZ NPs were synthesized by the self-assembly method. 131I-(cRGD)2/HSA@ABZ NPs were fabricated through covalently binding HSA@ABZ NPs with (cRGD)2 peptides, followed by chloramine T direct labeling with 131I. In vitro therapeutic effects on TNBC (MDA-MB-231 and 4T1 cells) were determined using MTT assay, crystal violet assay, wound-healing assay and western blotting analysis. In vivo treatment was performed using 4T1-bearing mice, and the tumor-targeting efficacy was assessed by gamma imaging. The distribution of NPs was quantitatively analyzed by detecting the gamma counts in tumor and main organs. The nanoparticles possessed negative charge, moderate size and good polydispersity index. Dual responding to pH and redox, the in vitro release rate of ABZ was more than 80% in 72 h. In vitro, NPs inhibited the proliferation of TNBC cells in a concentration-dependent manner and decreased cell migration. Western blotting analysis showed that the NPs, as well as free ABZ, cell-dependently induced autophagy and apoptosis by restraining or promoting the expression of p-p38 and p-JNK MAPK. In vivo, gamma imaging exhibited an earlier and denser radioactivity accumulation in tumor of 131I-(cRGD)2/HSA@ABZ NPs compared to NPs free of (cRGD)2 conjugating. Furthermore, 131I-(cRGD)2/HSA@ABZ NPs significantly suppressed tumor growth by restraining proliferation and promoting apoptosis in vivo. Our study suggested that the nanoparticles we developed enhanced tumor-targeting of ABZ and increased antitumor effects by combination of chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Shengli Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University
| | - Honglian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University
| | - Hao Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University
| | - Ling Yue
- The School of Radiation Medicine and Protection (SRMP) of Soochow University
- State Key Laboratory of Radiation Medicine and Protection, Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Zhen Weng
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfeng Yang
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zuo
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University
- State Key Laboratory of Radiation Medicine and Protection, Soochow University
| |
Collapse
|
8
|
Treatment of breast and colon cancer cell lines with anti-helmintic benzimidazoles mebendazole or albendazole results in selective apoptotic cell death. J Cancer Res Clin Oncol 2021; 147:2945-2953. [PMID: 34148157 DOI: 10.1007/s00432-021-03698-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Anti-helmintic drugs mebendazole and albendazole are commonly used to treat a variety of parasitic infections. They have recently shown some promising results in pre-clinical in vitro and in vivo anti-cancer studies. METHODS We compare their efficacy in breast and colon cancer cell lines as well as in non-cancerous cells and elucidate their mechanism of action. The drugs were screened for cytotoxicity in MDA-MB-231, MCF-7 (breast cancer), HT-29 (colorectal cancer), and mesenchymal stromal cells, using the MTT assay. Their effects on the cell cycle, tubulin levels, and cell death mechanisms were analysed using flow cytometry and fluorescent microscopy. RESULTS Mebendazole and albendazole were found to selectively kill cancer cells, being most potent in the colorectal cancer cell line HT-29, with both drugs having IC50 values of less than 1 µM at 48 h. Both mebendazole and albendazole induced classical apoptosis characterised by caspase-3 activation, phosphatidylserine exposure, DNA fragmentation, mitochondrial membrane permeability, and reactive oxygen species production. Cell cycle arrest in the G2/M phase was found, and tubulin polymerisation was disrupted. CONCLUSION Mebendazole and albendazole were shown to cause selective cancer cell death via a mechanism of classical apoptosis and cell cycle arrest, involving the destabilisation of microtubules.
Collapse
|
9
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Ni J, Miao T, Su M, Khan NU, Ju X, Chen H, Liu F, Han L. PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. J Control Release 2021; 329:934-947. [DOI: 10.1016/j.jconrel.2020.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
11
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
12
|
Son DS, Lee ES, Adunyah SE. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw 2020; 20:e29. [PMID: 32895616 PMCID: PMC7458798 DOI: 10.4110/in.2020.20.e29] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|