1
|
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Aluminum neurotoxicity and autophagy: a mechanistic view. Neurol Res 2023; 45:216-225. [PMID: 36208459 DOI: 10.1080/01616412.2022.2132727] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
It is strongly believed that aluminum is one of the insalubrious agents because of its neurotoxicity effects and influences on amyloid β (Aβ) production and tau protein hyperphosphorylation following oxidative stress, as one of the initial events in neurotoxicity. The autophagy process plays a considerable role in neurons in preserving intracellular homeostasis and recycling organelles and proteins, especially Aβ and soluble tau. Thus, autophagy is suggested to ameliorate aluminum neurotoxicity effects, and dysfunction of this process can lead to an increase in detrimental proteins. However, the relationship between aluminum neurotoxicity and autophagy dysregulation in some dimensions remains unclear. In the present review, we want to give an overview of the autophagy roles in aluminum neurotoxicity and how dysregulation of autophagy can affect aluminum neurotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Gai Y, Zhang MY, Ji PY, You RJ, Ge ZJ, Shen W, Sun QY, Yin S. Melatonin improves meiosis maturation against diazinon exposure in mouse oocytes. Life Sci 2022; 301:120611. [PMID: 35526594 DOI: 10.1016/j.lfs.2022.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
AIMS Organophosphorus pesticide diazinon (DZN) has adverse effects on animals and humans by direct contact or the spread of food chain. The antioxidant melatonin has protective effects on female reproduction. This study aimed to explore the effects of DZN on meiosis maturation in mouse cumulus oocyte complexes (COCs) and the effects of melatonin. MAIN METHODS Different concentrations of DZN and melatonin were added during the in vitro maturation of COCs. Then we detected the extrusion rate of the first polar body, the number of sperms binding to oocyte, mitochondrial membrane potential, reactive oxygen species (ROS), early apoptosis. Subsequently, the expression of Juno, CX37, CX43 and ERK1/2 were detected by immunofluorescence staining and Western blotting. KEY FINDINGS DZN exposure results in the failure of nuclear and cytoplasmic maturation of oocyte meiosis. Destruction of repositioning and function of mitochondria increases the levels of ROS and early apoptosis. The DZN-exposed oocytes express less Juno resulting to bind less sperms than normal. The loss of gap junctions and failure to activate ERK1/2 also contribute to the failure of cytoplasmic maturation. All these ultimately lead to the poor oocyte quality and low fertility. Appropriate melatonin can effectively restore all these defects. SIGNIFICANCE Under DZN exposure, melatonin can significantly improve the quality of oocytes, and melatonin promotes oocyte maturation by protecting gap junction and restoring ERK1/2 pathway, which is a new breakthrough for improving female fertility.
Collapse
Affiliation(s)
- Yang Gai
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Man-Yu Zhang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng-Yuan Ji
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rong-Jing You
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|