1
|
Le S, Le TV. Genetic diversity and population structure of natural provenances of Sonneratia caseolaris in Vietnam. J Genet Eng Biotechnol 2024; 22:100356. [PMID: 38494260 PMCID: PMC10903747 DOI: 10.1016/j.jgeb.2024.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Sommeratia caseolaris is considered the most important mangrove species for reforestation and conservation programs. Therefore, the knowledge of genetic diversity and the population structure of the species has important implications both for the conservation of existing genetic resources and development programs. In the present study, the genetic diversity and structure population of eight populations of S. caseolaris from the Northern to the Southern Coast of Vietnam were determined using nine ISSR molecular markers. RESULTS Eight populations of the mangrove species Sonneratia caseolaris were sampled across the natural range in Vietnam to evaluate the genetic diversity of the species. Nine ISSR markers were used to analyse 30 individuals from each population. There were moderate to high levels of genetic diversity (I = 0.447; h = 0.300). PCoA analysis gave very similar results to UPGMA dendrogram construction with the eight populations clustered into three genetic groups which mostly aligned with geographical distances among them. AMOVA analysis results indicated that most (81 %) of the genetic variation was within populations. CONCLUSION The current study also indicates the high level of genetic variation existing among and within the natural population of S. caseolaris in Vietnam. These results open new perspectives towards the conservation of the species' genetic resources and their future use in conservation and reforestation programs.
Collapse
Affiliation(s)
- Son Le
- Institute of Forest Tree Improvement and Biotechnology, Vietnamese Academy of Forest Sciences, 46, Ducthang, Bac Tuliem, 10000 Hanoi, Viet Nam; University of Tasmania, Hobart 7001, TAS, Australia.
| | - Thanh Van Le
- Research Institute for Forest Ecology and Environment, Vietnamese Academy of Forest Sciences, 46, Ducthang, Bac Tuliem, 10000 Hanoi, Viet Nam.
| |
Collapse
|
2
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Chauhan S, Tiwari PN, Payasi DK. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life (Basel) 2023; 13:1456. [PMID: 37511831 PMCID: PMC10381907 DOI: 10.3390/life13071456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Genome editing aims to revolutionise plant breeding and could assist in safeguarding the global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are the second gene-editing technique, and because they create double-stranded breaks, they are more dependable and effective. ZFNs were the original designed nuclease-based approach of genome editing. The Cys2-His2 zinc finger domain's discovery made this technique possible. Clustered regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes can be effectively modified using genome-editing technologies to enhance characteristics without introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by these exact breeding methods. There is abroad promise that genome-edited crops will be essential in the years to come for improving the sustainability and climate-change resilience of food systems. This method also has great potential for enhancing crops' resistance to various abiotic stressors. In this review paper, we summarize the most recent findings about the mechanism of abiotic stress response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve tolerance to stresses including drought, salinity, cold, heat, and heavy metals.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Prakash Narayan Tiwari
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
3
|
Androsiuk P, Milarska SE, Dulska J, Kellmann-Sopyła W, Szablińska-Piernik J, Lahuta LB. The comparison of polymorphism among Avena species revealed by retrotransposon-based DNA markers and soluble carbohydrates in seeds. J Appl Genet 2023; 64:247-264. [PMID: 36719514 PMCID: PMC10076396 DOI: 10.1007/s13353-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Here, we compared the polymorphism among 13 Avena species revealed by the iPBS markers and soluble carbohydrate profiles in seeds. The application of seven iPBS markers generated 83 bands, out of which 20.5% were polymorphic. No species-specific bands were scored. Shannon's information index (I) and expected heterozygosity (He) revealed low genetic diversity, with the highest values observed for A. nuda (I = 0.099; He = 0.068). UPGMA clustering of studied Avena accessions and PCoA results showed that the polyploidy level is the main grouping criterion. High-resolution gas chromatography revealed that the studied Avena accessions share the same composition of soluble carbohydrates, but significant differences in the content of total (5.30-22.38 mg g-1 of dry weight) and particular sugars among studied samples were observed. Sucrose appeared as the most abundant sugar (mean 61.52% of total soluble carbohydrates), followed by raffinose family oligosaccharides (31.23%), myo-inositol and its galactosides (6.16%), and monosaccharides (1.09%). The pattern of interspecific variation in soluble carbohydrates, showed by PCA, was convergent to that revealed by iPBS markers. Thus, both methods appeared as a source of valuable data useful in the characterization of Avena resources or in the discussion on the evolution of this genus.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Justyna Dulska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Wioleta Kellmann-Sopyła
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
4
|
Jinqiu Y, Bing L, Tingting S, Jinglei H, Zelai K, Lu L, Wenhua H, Tao H, Xinyu H, Zengqing L, Guowen C, Yajun C. Integrated Physiological and Transcriptomic Analyses Responses to Altitude Stress in Oat ( Avena sativa L.). Front Genet 2021; 12:638683. [PMID: 34220929 PMCID: PMC8248544 DOI: 10.3389/fgene.2021.638683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Oat is an annual gramineous forage grass with the remarkable ability to survive under various stressful environments. However, understanding the effects of high altitude stresses on oats is poor. Therefore, the physiological and the transcriptomic changes were analyzed at two sites with different altitudes, low (ca. 2,080 m) or high (ca. 2,918 m), respectively. Higher levels of antioxidant enzyme activity, reactive oxygen and major reductions in photosynthesis-related markers were suggested for oats at high altitudes. Furthermore, oat yields were severely suppressed at the high altitude. RNA-seq results showed that 11,639 differentially expressed genes were detected at both the low and the high altitudes in which 5,203 up-regulated and 6,436 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment tests were conducted and a group of major high altitude-responsive pigment metabolism genes, photosynthesis, hormone signaling, and cutin, suberine and wax biosynthesis were excavated. Using quantitative real-time polymerase chain response, we also confirmed expression levels of 20 DEGs (qRT-PCR). In summary, our study generated genome-wide transcript profile and may be useful for understanding the molecular mechanisms of Avena sativa L. in response to high altitude stress. These new findings contribute to our deeper relevant researches on high altitude stresses and further exploring new candidategenes for adapting plateau environment oat molecular breeding.
Collapse
Affiliation(s)
- Yu Jinqiu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Li Bing
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Song Tingting
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - He Jinglei
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - KongLing Zelai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lian Lu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - He Wenhua
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hai Tao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Huang Xinyu
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Liu Zengqing
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Cui Guowen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chen Yajun
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Chen Y, Peng Z, Wu C, Ma Z, Ding G, Cao G, Ruan S, Lin S. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers. PLoS One 2017; 12:e0175571. [PMID: 28406956 PMCID: PMC5391013 DOI: 10.1371/journal.pone.0175571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
Genetic diversity and variation among 11 populations of Chinese fir from Fujian province and Taiwan were assessed using inter-simple sequence repeat (ISSR) markers to reveal the evolutionary relationship in their distribution range in this report. Analysis of genetic parameters of the different populations showed that populations in Fujian province exhibited a greater level of genetic diversity than did the populations in Taiwan. Compared to Taiwan populations, significant limited gene flow were observed among Fujian populations. An UPGMA cluster analysis showed that the most individuals of Taiwan populations formed a single cluster, whereas 6 discrete clusters were formed by each population from Fujian. All populations were divided into 3 main groups and that all 5 populations from Taiwan were gathered into a subgroup combined with 2 populations, Dehua and Liancheng, formed one of the 3 main groups, which indicated relative stronger relatedness. It is supported by a genetic structure analysis. All those results are suggesting different levels of genetic diversity and variation of Chinese fir between Fujian and Taiwan, and indicating different patterns of evolutionary process and local environmental adaption.
Collapse
Affiliation(s)
- Yu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
| | - Zhuqing Peng
- Department of Nature, Fujian Museum, Fuzhou, Fujian, China
| | - Chao Wu
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhihui Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guochang Ding
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
| | - Guangqiu Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
| | - Shaoning Ruan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- * E-mail: (SR); (SL)
| | - Sizu Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, Fujian, China
- * E-mail: (SR); (SL)
| |
Collapse
|