1
|
Usman SM, Khan RS, Shikari AB, Yousuf N, Waza SA, Wani SH, Bhat MA, Shazia F, Sheikh FA, Majid A. Unveiling the sweetness: evaluating yield and quality attributes of early generation sweet corn (Zea mays subsp. sachharata) inbred lines through morphological, biochemical and marker-based approaches. Mol Biol Rep 2024; 51:307. [PMID: 38365995 DOI: 10.1007/s11033-024-09229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Sweet corn is gaining tremendous demand worldwide due to urbanization and changing consumer preferences. However, genetic improvement in this crop is being limited by narrow genetic base and other undesirable agronomic traits that hinder the development of superior cultivars. The main requirement in this direction is the development of potentially promising parental lines. One of the most important strategies in this direction is to develop such lines from hybrid-oriented source germplasm which may provide diverse base material with desirable biochemical and agro-morphological attributes. METHODS AND RESULTS The study was undertaken to carry out morphological and biochemical evaluation of 80 early generation inbred lines (S2) of sweet corn that were developed from a cross between two single cross sweet corn hybrids (Mithas and Sugar-75). Moreover, validation of favourable recessive alleles for sugar content was carried out using SSR markers. The 80 sweet corn inbreds evaluated for phenotypic characterization showed wide range of variability with respect to different traits studied. The highest content of total carotenoids was found in the inbred S27 (34 μg g-1) followed by the inbred S65 (31.1 μg g-1). The highest content for total sugars was found in S60 (8.54%) followed by S14 (8.34%). Molecular characterization of 80 inbred lines led to the identification of seven inbreds viz., S21, S28, S47, S48, S49, S53, and S54, carrying the alleles specific to the sugary gene (su1) with respect to the markers umc2061 and bnlg1937. Comparing the results of scatter plot for biochemical and morphological traits, it was revealed that inbreds S9, S23, S27 and S36 contain high levels of total sugars and total carotenoids along with moderate values for amylose and yield attributing traits. CONCLUSION The inbred lines identified with desirable biochemical and agro-morphological attributes in the study could be utilized as source of favourable alleles in sweet corn breeding programmes after further validation for disease resistance and other agronomic traits. Consequently, the study will not only enhance the genetic base of sweet corn germplasm but also has the potential to develop high-yielding hybrids with improved quality. The inbreds possessing su1 gene on the basis of umc2061 and bnlg1937 markers were also found to possess high sugar content. This indicates the potential of these lines as desirable candidates for breeding programs aimed at improving sweet corn yield and quality. These findings also demonstrate the effectiveness of the molecular markers in facilitating marker-assisted selection for important traits in sweet corn breeding.
Collapse
Affiliation(s)
- Shah Mohammad Usman
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India.
| | - Raheel Shafeeq Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - Asif Bashir Shikari
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - Nida Yousuf
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Showkat Ahmad Waza
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - Shabir Hussain Wani
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - Muhammad Ashraf Bhat
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - F Shazia
- Division of Plant Pathology, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| | - Faroq Ahmad Sheikh
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India.
| | - Asma Majid
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, Kashmir, Jammu and Kashmir, India
| |
Collapse
|
2
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Saha I, Rathinavel K, Manoharan B, Adhimoolam K, Sampathrajan V, Rajasekaran R, Muthurajan R, Natesan S. The resurrection of sweet corn inbred SC11-2 using marker aided breeding for β-carotene. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1004450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sweet corn has dominated the urban market due to its sweetness, tenderness, and ease of digestibility. It's import and export values have dramatically increased during the past 10 years as a fresh, processed, and preserved commodity. However, the commercially available sweet corns are deficient in β-carotene. In our study, we introgressed the favorable allele of crtRB1 (responsible for high β-carotene) into the recurrent sweet corn inbred SC11-2 from maize donor parent UMI1230β1+ to develop the β-carotene-rich sweet corn genotype by marker aided breeding. The crtRB1 3′TE InDel marker was utilized for foreground selection of favorable genotype. A total of 103 polymorphic SSR markers were employed for background selection, resulting in a 96% recovery of recurrent parent genome (RPG). We recorded high β-carotene content (9.878–10.645 μg/g) in the introgressed lines compared to the recurrent parent, SC11-2 (0.989 μg/g). The sugar content ranged from 18 to 19.10% and was on par with the recurrent parent (20.40%). These biofortified inbreds can be used as a donor in maize breeding programs to develop sweet corn genotypes with high β-carotene content.
Collapse
|
4
|
Chhabra R, Muthusamy V, Baveja A, Katral A, Mehta B, Zunjare RU, Hossain F. Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds. PLoS One 2022; 17:e0274732. [PMID: 36136965 PMCID: PMC9498942 DOI: 10.1371/journal.pone.0274732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
Sweet corn has become a popular food worldwide. It possesses six-times more sugar than field corn due to the presence of recessive shrunken2 (sh2) gene. Despite availability of diverse sweet corn germplasm, comprehensive characterization of sh2 has not been undertaken so far. Here, entire Sh2 gene (7320 bp) among five field corn-(Sh2Sh2) and six sweet corn-(sh2sh2) inbreds was sequenced. A total of 686 SNPs and 372 InDels were identified, of which three SNPs differentiated the wild-(Sh2) and mutant-(sh2) allele. Ten InDel markers were developed to assess sh2 gene-based diversity among 23 sweet corn and 25 field corn lines. Twenty-five alleles and 47 haplotypes of sh2 were identified among 48 inbreds. Among markers, MGU-InDel-2, MGU-InDel-3, MGU-InDel-5 and MGU-InDel-8 had PIC>0.5. Major allele frequency varied from 0.458–0.958. The gene sequence of these maize inbreds was compared with 25 orthologues of monocots. Sh2 gene possessed 15–18 exons with 6-225bp among maize, while it was 6–21 exons with 30-441bp among orthologues. While intron length across maize genotypes varied between 67-2069bp, the same among orthologues was 57–2713 bp. Sh2-encoded AGPase domain was more conserved than NTP transferase domain. Nucleotide and protein sequences of sh2 in maize and orthologues revealed that rice orthologue was closer to maize than other monocots. The study also provided details of motifs and domains present in sh2 gene, physicochemical properties and secondary structure of SH2 protein in maize inbreds and orthologues. This study reports detailed characterization and diversity analysis in sh2 gene of maize and related orthologues in various monocots.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brijesh Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Chhabra R, Muthusamy V, Gain N, Katral A, Prakash NR, Zunjare RU, Hossain F. Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds. Mol Genet Genomics 2021; 296:1085-1102. [PMID: 34159441 DOI: 10.1007/s00438-021-01807-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Sweet corn is popular worldwide as vegetable. Though large numbers of sugary1 (su1)-based sweet corn germplasm are available, allelic diversity in su1 gene encoding SU1 isoamylase among diverse maize inbreds has not been analyzed. Here, we characterized the su1 gene in maize and compared with allied species. The entire su1 gene (11,720 bp) was sequenced among six mutant (su1) and five wild (Su1) maize inbreds. Fifteen InDels of 2-45 bp were selected to develop markers for studying allelic diversity in su1 gene among 19 mutant- (su1) and 29 wild-type (Su1) inbreds. PIC ranged from 0.15 (SU-InDel7) to 0.37 (SU-InDel13). Major allele frequency varied from 0.52 to 0.90, while gene diversity ranged from 0.16 to 0.49. Phylogenetic tree categorized 48 maize inbreds in two clusters each for wild- type (Su1) and mutant (su1) types. 44 haplotypes of su1 were observed, with three haplotypes (Hap6, Hap22 and Hap29) sharing more than one genotype. Further, comparisons were made with 23 orthologues of su1 from 16 grasses and Arabidopsis. Maize possessed 15-19 exons in su1, while it was 11-24 exons among orthologues. Introns among the orthologues were longer (77-2206 bp) than maize (859-1718 bp). SU1 protein of maize and orthologues had conserved α-amylase and CBM_48 domains. The study also provided physicochemical properties and secondary structure of SU1 protein in maize and its orthologues. Phylogenetic analysis showed closer relationship of maize SU1 protein with P. hallii, S. bicolor and E. tef than Triticum sp. and Oryza sp. The study showed that presence of high allelic diversity in su1 gene which can be utilized in the sweet corn breeding program. This is the first report of comprehensive characterization of su1 gene and its allelic forms in diverse maize and related orthologues.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Nitish R Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Ruanjaichon V, Khammona K, Thunnom B, Suriharn K, Kerdsri C, Aesomnuk W, Yongsuwan A, Chaomueang N, Thammapichai P, Arikit S, Wanchana S, Toojinda T. Identification of Gene Associated with Sweetness in Corn ( Zea mays L.) by Genome-Wide Association Study (GWAS) and Development of a Functional SNP Marker for Predicting Sweet Corn. PLANTS (BASEL, SWITZERLAND) 2021; 10:1239. [PMID: 34207135 PMCID: PMC8235792 DOI: 10.3390/plants10061239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Sweetness is an economically important eating quality trait for sweet-corn breeding. To investigate the genetic control of the sweetness trait, we conducted a genome-wide association study (GWAS) in an association panel consisting of 250 sweet corn and waxy corn inbred and recombinant inbred lines (RILs), together with the genotypes obtained from the high-density 600K maize genotyping single-nucleotide polymorphism (SNP) array. GWAS results identified 12 significantly associated SNPs on chromosomes 3, 4, 5, and 7. The most associated SNP, AX_91849634, was found on chromosome 3 with a highly significant p-value of ≤1.53 × 10-14. The candidate gene identified within the linkage disequilibrium (LD) of this marker was shrunken2 (Zm00001d044129; sh2), which encodes ADP-glucose pyrophosphorylase (AGPase), a 60 kDa subunit enzyme that affects starch metabolism in the maize endosperm. Several SNP markers specific to variants in sh2 were developed and validated. According to the validation in a set of 81 inbred, RIL, and popular corn varieties, marker Sh2_rs844805326, which was developed on the basis of the SNP at the position 154 of exon 1, was highly efficient in classifying sh2-based sweet corn from other types of corn. This functional marker is extremely useful for marker-assisted breeding in sh2-sweet corn improvement and marketable seed production.
Collapse
Affiliation(s)
- Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Kanogporn Khammona
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalong Kerdsri
- Chai Nat Field Crops Research Center, Chai Nat 17000, Thailand;
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Arweewut Yongsuwan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Naraporn Chaomueang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Paradee Thammapichai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (V.R.); (K.K.); (B.T.); (W.A.); (A.Y.); (N.C.)
| |
Collapse
|
7
|
Abstract
Modern sweet corn is distinguished from other vegetable corns by the presence of one or more recessive alleles within the maize endosperm starch synthesis pathway. This results in reduced starch content and increased sugar concentration when consumed fresh. Fresh sweet corn originated in the USA and has since been introduced in countries around the World with increasing popularity as a favored vegetable choice. Several reviews have been published recently on endosperm genetics, breeding, and physiology that focus on the basic biology and uses in the US. However, new questions concerning sustainability, environmental care, and climate change, along with the introduction of sweet corn in other countries have produced a variety of new uses and research activities. This review is a summary of the sweet corn research published during the five years preceding 2021.
Collapse
|
8
|
Mehta BK, Muthusamy V, Zunjare RU, Baveja A, Chauhan HS, Chhabra R, Singh AK, Hossain F. Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Molecular analysis of mutant granule-bound starch synthase-I ( waxy1) gene in diverse waxy maize inbreds. 3 Biotech 2019; 9:3. [PMID: 30555769 DOI: 10.1007/s13205-018-1530-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Waxy corn is popular beacuse of its high amylopectin due to mutation in granule-bound starch synthase-I or Waxy1 (Wx1) gene. Here, we characterized the wx1 allele among 24 diverse waxy inbreds using gene-based markers. A total of 29 alleles with average of 1.81 alleles/locus were observed. Major allele frequency varied from 0.42 to 1.00, with mean of 0.74. The polymorphism information content ranged from 0.00 to 0.56 (average 0.24). Three simple sequence repeat markers, viz., phi027, phi022 and phi061 were more polymorphic in the study. The mean heterozygosity was 0.04, which indicated attainment of higher levels of homozygosity. Dissimilarity coefficient varied from 0.00 to 0.90 with average of 0.51. Seventeen diverse haplotypes of wx1 allele were observed that was consistent with the pedigree. Cluster analyses grouped 24 genotypes into two main clusters each having sub-clusters. The information generated here possesses great potential for improvement of high amylopectin in maize through marker-assisted selection. This is the first report of molecular dissection of wx1 gene among the novel waxy inbreds developed in India.
Collapse
|
10
|
Mahato A, Shahi JP, Singh PK, Kumar M. Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers. 3 Biotech 2018; 8:332. [PMID: 30073117 DOI: 10.1007/s13205-018-1353-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022] Open
Abstract
Assessment of genetic diversity is a pre-requisite to broaden the genetic background of cultivated base of sweet corn, an endosperm mutant of field corn that alters starch biosynthesis pathway in endosperm. In the current investigation, genetic divergence among 39 inbred lines was assessed on the basis of 14 agro-morphological traits, two quality parameters and 63 microsatellite markers, selected on the basis of their association with QTLs affecting kernel quality. The cluster analysis based on unweighted pair-group method using arithmetic averages for agro-morphological and quality traits grouped the 39 inbreds into three clusters with 5, 14 and 20 genotypes, respectively. The unweighted neighbor-joining method for microsatellite markers also categorized the inbred lines into three major clusters grouping 10, 9 and 20 genotypes in cluster I, II and III, respectively. The two cluster distribution patterns showed approximately 36 percent similarity. The assay of 30 microsatellite repeats identified 82 alleles with allele size ranging from 80 to 400 bp. The major allele frequency and PIC value of the markers ranged from 0.42 to 0.79 and 0.27 to 0.63, respectively, which suggested the presence of high amount of polymorphism among the inbreds. The average heterozygosity was recorded to be 0.19 which signifies proper maintenance of inbred population. Principle co-ordinate analysis also depicted diverse nature of inbred lines and agreed well with the previously determined clustering pattern. This study has identified several inbreds, having good yield and high sugar content which will not only enhance the genetic background of sweet corn germplasm but will also lead to development of high-yielding hybrids with improved quality.
Collapse
|
11
|
Devi EL, Hossain F, Muthusamy V, Chhabra R, Zunjare RU, Baveja A, Jaiswal SK, Goswami R, Dosad S. Microsatellite marker-based characterization of waxy maize inbreds for their utilization in hybrid breeding. 3 Biotech 2017; 7:316. [PMID: 28955613 PMCID: PMC5599379 DOI: 10.1007/s13205-017-0946-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Waxy corn possesses 95-100% amylopectin, compared to 70-75% in normal maize, owing to mutation in Wx gene encoding a granule-bound starch synthase I. Amylopectin is used as an ingredient in textile, adhesive and paper industries. Further, waxy green cob is popular as breakfast item in South Asia and an important constituent of diet in north-eastern states of India as well. We developed a series of waxy inbreds from diverse exotic sources and through introgression breeding. To characterize and unravel the genetic relationships, 24 diverse waxy inbreds were analysed using 77 SSRs distributed throughout the genome. The study generated a total of 203 polymorphic alleles, with a mean of 2.69 alleles per locus. A total of nine unique and 20 rare alleles were detected. The polymorphism information content ranged from 0.08 to 0.68 with an average value of 0.40. Molecular profiling suggested sufficient attainment of homozygosity among the inbreds. Jaccard's dissimilarity coefficient between pairs of genotypes varied from 0.26 to 0.83 which revealed the diverse nature of the inbred lines. Cluster analyses grouped 24 genotypes into three major clusters. Principle coordinate analysis based on SSR also depicted the diverse origin of the genotypes as per the pedigree more reliably than agro-morphological traits. These inbreds were also promising for various cob and grain characteristics including grain yield. The study identified a set of potential cross-combinations that can be planned to develop highly heterotic waxy hybrid combinations. This is the first report of development and characterization of waxy inbreds in India.
Collapse
Affiliation(s)
- Elangbam Lamalakshmi Devi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Manipur, India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rajat Goswami
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sweta Dosad
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|