1
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Sultana MS, Millwood RJ, Mazarei M, Stewart CN. Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. PLANT CELL REPORTS 2022; 41:293-305. [PMID: 34674016 DOI: 10.1007/s00299-021-02800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.
Collapse
Affiliation(s)
| | | | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
3
|
Barmukh R, Roorkiwal M, Jaba J, Chitikineni A, Mishra SP, Sagurthi SR, Munghate R, Sharma HC, Varshney RK. Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea (Cicer arietinum L.). THE PLANT GENOME 2020; 14:e20071. [PMID: 33289349 DOI: 10.1002/tpg2.20071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Genetic enhancement for resistance against the pod borer, Helicoverpa armigera is crucial for enhancing production and productivity of chickpea. Here we provide some novel insights into the genetic architecture of natural variation in H. armigera resistance in chickpea, an important legume, which plays a major role in food and nutritional security. An interspecific recombinant inbred line (RIL) population developed from a cross between H. armigera susceptible accession ICC 4958 (Cicer arietinum) and resistant accession PI 489777 (Cicer reticulatum) was evaluated for H. armigera resistance component traits using detached leaf assay and under field conditions. A high-throughput AxiomCicerSNP array was utilized to construct a dense linkage map comprising of 3,873 loci and spanning a distance of 949.27 cM. Comprehensive analyses of extensive genotyping and phenotyping data identified nine main-effect QTLs and 955 epistatic QTLs explaining up to 42.49% and 38.05% phenotypic variance, respectively, for H. armigera resistance component traits. The main-effect QTLs identified in this RIL population were linked with previously described genes, known to modulate resistance against lepidopteran insects in crop plants. One QTL cluster harbouring main-effect QTLs for three H. armigera resistance component traits and explaining up to 42.49% of the phenotypic variance, was identified on CaLG03. This genomic region, after validation, may be useful to improve H. armigera resistance component traits in elite chickpea cultivars.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Jagdish Jaba
- Theme-Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Suraj Prasad Mishra
- Theme-Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rajendra Munghate
- Theme-Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - H C Sharma
- Theme-Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
4
|
Meriño-Cabrera Y, de Oliveira Mendes TA, Castro JGS, Barbosa SL, Macedo MLR, de Almeida Oliveira MG. Noncompetitive tight-binding inhibition of Anticarsia gemmatalis trypsins by Adenanthera pavonina protease inhibitor affects larvae survival. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21687. [PMID: 32342573 DOI: 10.1002/arch.21687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The economic loss in soybean crops caused by the Lepidoptera insects has encouraged the search for new strategies to control this pest, which are currently based on synthetic insecticides. This paper evaluated the ability of ApTI (Adenanthera pavonina trypsin inhibitor) to inhibit trypsin-like proteins from Anticarsia gemmatalis by docking, molecular dynamics, and enzymatic and survival assay. The docking and molecular dynamic simulation between trypsin and ApTI were performed using the program CLUSPRO and NAMD, respectively. The inhibitory constant Ki and the inhibition type were determined through chromogenic assays. The survival assay of neonatal larvae under treatment with artificial diet supplemented with ApTI was also performed. The ApTI binding site was predicted to block substrate access to trypsin due to four interactions with the enzyme, producing a complex with a surface area of 1,183.7 Å2 . The kinetic analysis revealed a noncompetitive tight-binding mechanism. The survival curves obtained using Kaplan-Meier estimators indicated that the highest larvae mortality was 60%, using 1.2 mg of ApTI per 100 ml of artificial diet. The in vitro, in vivo, and in silico studies demonstrated that ApTI is a strong noncompetitive inhibitor of trypsin with biotechnological potential for the control of A. gemmatalis insect.
Collapse
Affiliation(s)
- Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuaria, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Tiago A de Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuaria, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - José G S Castro
- Instituto de Biotecnologia Aplicada à Agropecuaria, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
- Departamento de Ciencias Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Samuel L Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuaria, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuaria, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Savić J, Nikolić R, Banjac N, Zdravković-Korać S, Stupar S, Cingel A, Ćosić T, Raspor M, Smigocki A, Ninković S. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153055. [PMID: 31639537 DOI: 10.1016/j.jplph.2019.153055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Food demands of increasing human population dictate intensification of livestock production, however, environmental stresses could jeopardize producers' efforts. Forage legumes suffer from yield losses and poor nutritional status due to salinity increase of agricultural soils. As tools aimed to reduce negative impacts of biotic or abiotic stresses, proteinase inhibitors (PIs) have been promoted for biotechnological improvements. In order to increase tolerance of Lotus corniculatus L. to salt stress, serine PI, BvSTI, was introduced into this legume using Agrobacterium rhizogenes, with final transformation efficiency of 4.57%. PCR, DNA gel-blot, RT-PCR and in-gel protein activity assays confirmed the presence and activity of BvSTI products in transformed lines. Plants from three selected transgenic lines (21, 73 and 109) showed significant alterations in overall phenotypic appearance, corresponding to differences in BvSTI accumulation. Lines 73 and 109 showed up to 7.3-fold higher number of tillers and massive, up to 5.8-fold heavier roots than in nontransformed controls (NTC). Line 21 was phenotypically similar to NTC, accumulated less BvSTI transcripts and did not exhibit an additional band of recombinant trypsin inhibitor as seen in lines 73 and 109. Exposure of the transgenic lines to NaCl revealed different levels of salt stress susceptibility. The NaCl sensitivity index, based on morphological appearance and chlorophyll concentrations showed that lines 73 and 109 were significantly less affected by salinity than NTC or line 21. High level of BvSTI altered morphology and delayed salt stress related senescence, implicating BvSTI gene as a promising tool for salinity tolerance improvement trials in L. corniculatus.
Collapse
Affiliation(s)
- Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Radomirka Nikolić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Snežana Zdravković-Korać
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Sofija Stupar
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandar Cingel
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ann Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA
| | - Slavica Ninković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
6
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
7
|
Mall T, Gupta M, Dhadialla TS, Rodrigo S. Overview of Biotechnology-Derived Herbicide Tolerance and Insect Resistance Traits in Plant Agriculture. Methods Mol Biol 2019; 1864:313-342. [PMID: 30415345 DOI: 10.1007/978-1-4939-8778-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biotechnology has been central for the acceleration of crop improvement over the last two decades. Since 1994, when the first commercial biotechnology-derived tomato crop was commercialized, the cultivated area for genetically modified crops has reached 185.1 million hactares worldwide. Both the number of crops and the number of traits developed using biotechnology have accounted for this increase. Among the most impactful biotechnology-derived traits are insect resistance and herbicide tolerance, which have greatly contributed to the worldwide increase in agricultural productivity and stabilization of food security. In this chapter, we provide an overview of the history of the biotechnology-derived input traits, the existing genetically engineered commercial crop products carrying insect resistance and herbicide tolerance traits, as well as a perspective on how new technologies could further impact the development of new traits in crops. With the projection of the world population to increase to 9.8 billion by the year 2050 and reduction in available farmland, one of the biggest challenges will be to provide sustainable nourishment to the projected population. Biotechnology will continue to be the key enabler for development of insect resistance and herbicide tolerance traits to overcome that imminent challenge.
Collapse
Affiliation(s)
- Tejinder Mall
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Manju Gupta
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | | | - Sarria Rodrigo
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA.
| |
Collapse
|