1
|
Bossa R, Di Colandrea M, Salbitani G, Carfagna S. Phosphorous Utilization in Microalgae: Physiological Aspects and Applied Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2127. [PMID: 39124245 PMCID: PMC11314164 DOI: 10.3390/plants13152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is a fundamental element for life, playing an integral role in cellular metabolism including energy transfer, nucleic acid synthesis, and membrane structure. This nutrient is critical to the physiological ecology in all photosynthetic organisms including eukaryotic microalgae and cyanobacteria. The review, here presented, delves into the intricate mechanisms governing phosphorus acquisition from the environment, its utilization in plant metabolism, and regulation in these photosynthetic microorganisms. Furthermore, it comprehensively explores the strategies employed by microalgae to cope with phosphorus limitation, such as the activation of high-affinity phosphate transporters and the synthesis of phosphorus storage compounds. On the other hand, the ability to consume abundant phosphate makes microalgae exploitable organisms for environmental remediation processes. The knowledge synthesized in this review contributes to the broader understanding of microalgal physiology, offering insights into the ecological and biotechnological implications of phosphorus assimilation in these microorganisms.
Collapse
Affiliation(s)
| | | | - Giovanna Salbitani
- Department of Biology, University Federico II of Naples, Complesso Universitario MSA, 80126 Naples, Italy; (R.B.); (M.D.C.); (S.C.)
| | | |
Collapse
|
2
|
Salvatore MM, Carraturo F, Salbitani G, Rosati L, De Risi A, Andolfi A, Salvatore F, Guida M, Carfagna S. Biological and metabolic effects of the association between the microalga Galdieria sulphuraria and the fungus Penicillium citrinum. Sci Rep 2023; 13:1789. [PMID: 36720953 PMCID: PMC9889788 DOI: 10.1038/s41598-023-27827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
Contamination of microalgae cultures can reduce their productivity and affect the quality of biomass and valuable bioproducts. In this article, after having isolated and identified for the first time the filamentous fungus Penicillium citrinum from heterotrophic cultures of the red polyextremophilic microalga Galdieria sulphuraria, we investigated the biological and metabolic significance of this alga-fungus association. In the same medium, both organisms grow better in each other's presence than separately. Both cell density and cell size of G. sulphuraria increase in co-cultures compared to pure alga cultures. In co-cultures, despite very severe growth conditions, the load of P. citrinum increases compared to pure fungus cultures. Optical microscope images have shown physical contact between cells of P. citrinum hyphae and G. sulphuraria which, however, retain their morphology and cell wall intact. GC-MS-based metabolomics analysis of metabolites excreted in the culture medium shows that pure cultures of the fungus and alga and co-cultures of alga plus fungus can be easily differentiated based on their metabolic products. Indeed, a richer assortment of extracellular metabolites (comprising both products of primary and secondary metabolism) is a distinct feature of co-cultures compared to both pure alga and pure fungus cultures.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, NA, Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Naples, Italy. .,Hygiene Laboratory, Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, Corso Nicolangelo Protopisani, 80146, Napoli, NA, Italy.
| | | | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Arianna De Risi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, NA, Italy
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy.,Hygiene Laboratory, Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, Corso Nicolangelo Protopisani, 80146, Napoli, NA, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel) 2022; 8:jof8101099. [PMID: 36294664 PMCID: PMC9605242 DOI: 10.3390/jof8101099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, the increasing interest in microalgae as sources of new biomolecules and environmental remediators stimulated scientists’ investigations and industrial applications. Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as human and animal food supplements. Microalgae can be grown using various cultivation systems depending on their final application. One of the main problems in microalgae cultivations is the possible presence of biological contaminants. Fungi, among the main contaminants in microalgal cultures, are able to influence the production and quality of biomass significantly. Here, we describe fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions, highlighting the biological aspects of this interaction and the possible biotechnological applications.
Collapse
|
4
|
Enhancement of Pigments Production by Nannochloropsis oculata Cells in Response to Bicarbonate Supply. SUSTAINABILITY 2021. [DOI: 10.3390/su132111904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the effects of bicarbonate addition on growth and pigment contents of the unicellular microalga Nannochloropsis oculata, were evaluated. N. oculata represents an interesting source of biomolecules widely used for food supplements and nutraceuticals. The bicarbonate was supplemented to microalgae cultures at concentrations of 0, 6, 18, 30, 42 and 60 mM. The cultures supplemented with salt at highest concentrations (42 and 60 mM) showed a significant increase in algal growth, demonstrated by the optical density spread. The intracellular content of pigments such as chlorophyll a and total carotenoids reached the highest values in cells from cultures supplied with bicarbonate. In fact, concentrations of bicarbonate from 30 to 60 mM strongly improved, for a short period of only 72 h, the cellular levels of chlorophylls and carotenoids. These are interesting pigments with commercial applications. The utilization of bicarbonate could represent an interesting sustainable opportunity to improve microalgae cultivation for cellular growth and pigment contents.
Collapse
|
5
|
Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. SUSTAINABILITY 2021. [DOI: 10.3390/su13020956] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In plant cells, ammonium is considered the most convenient nitrogen source for cell metabolism. However, despite ammonium being the preferred N form for microalgae, at higher concentrations, it can be toxic, and can cause growth inhibition. Microalgae’s tolerance to ammonium depends on the species, with various taxa showing different thresholds of tolerability and symptoms of toxicity. In the environment, ammonium at high concentrations represents a dangerous pollutant. It can affect water quality, causing numerous environmental problems, including eutrophication of downstream waters. For this reason, it is important to treat wastewater and remove nutrients before discharging it into rivers, lakes, or seas. A valid and sustainable alternative to conventional treatments could be provided by microalgae, coupling the nutrient removal from wastewater with the production of valuable biomass. This review is focused on ammonium and its importance in algal nutrition, but also on its problematic presence in aquatic systems such as wastewaters. The aim of this work is to provide recent information on the exploitation of microalgae in ammonium removal and the role of ammonium in microalgae metabolism.
Collapse
|
6
|
An S, Liu X, Wen B, Li X, Qi P, Zhang K. Comparison of the Photosynthetic Capacity of Phragmites australis in Five Habitats in Saline‒Alkaline Wetlands. PLANTS 2020; 9:plants9101317. [PMID: 33036187 PMCID: PMC7600274 DOI: 10.3390/plants9101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Water shortages have an important impact on the photosynthetic capacity of Phragmites australis. However, this impact has not been adequately studied from the perspective of photosynthesis. An in-depth study of the photosynthetic process can help in better understanding the impact of water shortages on the photosynthetic capacity of P. australis, especially on the microscale. The aim of this study is to explore the photosynthetic adaptation strategies to environmental changes in saline‒alkaline wetlands. The light response curves and CO2 response curves of P. australis in five habitats (hygrophilous, xerophytic, psammophytic, abandoned farmland, paddy field drainage) in saline‒alkaline wetlands were measured at different stages of their life history, and we used a nonrectangular hyperbolic model to fit the data. It was concluded that P. australis utilized coping strategies that differed between the growing and breeding seasons. P. australis in abandoned farmland during the growing season had the highest apparent quantum efficiency (AQE) and photosynthetic utilization efficiency for weak light because of the dark environment. The dark respiration rate of P. australis in the drainage area of paddy fields was the lowest, and it had the highest values for photorespiration rate, maximum photosynthetic rate (Pmax), photosynthetic capacity (Pa), biomass, maximum carboxylation rate (Vcmax), and maximum electron transfer rate (Jmax). The light insensitivity of P. australis increased with the transition from growing to breeding season, and the dark respiration rate also showed a downward trend. Moreover, Vcmax and Jmax would decline when Pmax and Pa showed a declining trend, and vice versa. In other words, Vcmax and Jmax could explain changes in the photosynthetic capacity to some extent. These findings contribute to providing insights that Vcmax and Jmax can directly reflect the variation in photosynthetic capacity of P. australis under water shortages in saline‒alkaline wetlands and in other parts of world where there are problems with similarly harmful environmental conditions.
Collapse
Affiliation(s)
- Subang An
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.A.); (B.W.); (X.L.); (P.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingtu Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.A.); (B.W.); (X.L.); (P.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-136-7430-4616
| | - Bolong Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.A.); (B.W.); (X.L.); (P.Q.)
| | - Xiaoyu Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.A.); (B.W.); (X.L.); (P.Q.)
| | - Peng Qi
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.A.); (B.W.); (X.L.); (P.Q.)
| | - Kun Zhang
- College of Wetland Science, Southwest Forestry University, Kunming 650224, China;
| |
Collapse
|
7
|
Rapid and Positive Effect of Bicarbonate Addition on Growth and Photosynthetic Efficiency of the Green Microalgae Chlorella Sorokiniana (Chlorophyta, Trebouxiophyceae). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bicarbonate ions are the primary source of inorganic carbon for autotrophic organisms living in aquatic environments. In the present study, we evaluated the short-term (hours) effects of sodium bicarbonate (NaHCO3) addition on the growth and photosynthetic efficiency of the green algae Chlorella sorokiniana (211/8k). Bicarbonate was added to nonaxenic cultures at concentrations of 1, 2, and 3 g L−1 leading to a significant increase in biomass especially at the highest salt concentration (3 g L−1) and also showing a bactericidal and bacteriostatic effect that helped to keep a reduced microbial load in the algal culture. Furthermore, bicarbonate stimulated the increase in cellular content of chlorophyll a, improving the photosynthetic performance of cells. Since microalgae of genus Chlorella spp. show great industrial potential for the production of biofuels, nutraceuticals, cosmetics, health, and dietary supplements and the use of bicarbonate as a source of inorganic carbon led to short-term responses in Chlorella sorokiniana, this method represents a valid alternative not only to the insufflation of carbon dioxide for the intensive cultures but also for the production of potentially bioactive compounds in a short period.
Collapse
|