1
|
Su B, Li Z, Liu H, Niu X, Zhao X, Wu Y, Wang Q, Yuan Y, Xiao Z, Huang D. Identification and validation of reference genes for RT-qPCR analysis in Iris domestica under Cd stress. Heliyon 2024; 10:e36923. [PMID: 39281568 PMCID: PMC11400969 DOI: 10.1016/j.heliyon.2024.e36923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Iris domestica is a widely used ornamental garden and important medicinal plant. Our previous studies have shown that it exhibits significant uptake and translocation capacity under Cd stress compared to other Iris species. Gene expression is studied using RT-qPCR; however, there are no reference genes have been found for I. domestica under Cd stress. In this investigation, thirteen possible reference genes from previous studies and our transcriptome were screened using RT-qPCR in the leaves and roots of Cd-stressed plants. The findings revealed that UBC9 and ACT were the best reference genes for roots with and without Cd stress, whereas YLS8 and ACT7 were the best reference genes for leaves. Among the different tissues without Cd stress, UBC9 and UBC28 exhibited the best results, whereas PP2C06 and UBC9 exhibited the best results under Cd stress. The most stable reference genes in the leaves and roots were UBC9 and UBC28, respectively, under and without Cd stress, and GADPH was the most unstable. Finally, three metal ion response genes, NRAMP2, YSL9 and CYP81Q32 were detected using RT-qPCR and compared with the transcriptome data to further confirm the reliability of the chosen genes. This study identified suitable reference genes for I. domestica under Cd-stress conditions.
Collapse
Affiliation(s)
- Beibei Su
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
- Shijiazhuang Information Engineering Vocational College, Shijiazhuang, 052161, China
| | - Ziwei Li
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojie Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yumeng Wu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Zhuolin Xiao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
2
|
Liu H, Liu J, Chen P, Zhang X, Wang K, Lu J, Li Y. Selection and Validation of Optimal RT-qPCR Reference Genes for the Normalization of Gene Expression under Different Experimental Conditions in Lindera megaphylla. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112185. [PMID: 37299163 DOI: 10.3390/plants12112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Lindera megaphylla, a broad-leaved evergreen that is used as a landscape ornamental plant and medicinal plant, is an ecologically important and dominant tree species. However, little is known about the molecular mechanisms of its growth, development, and metabolism. The selection of suitable reference genes is critical for molecular biological analyses. To date, no research on reference genes as a foundation for gene expression analysis has been undertaken in L. megaphylla. In this study, 14 candidate genes were selected from the transcriptome database of L. megaphylla for RT-qPCR assay under different conditions. Results showed that helicase-15 and UBC28 were most stable in different tissues of seedlings and adult trees. For different leaf developmental stages, the best combination of reference genes was ACT7 and UBC36. UBC36 and TCTP were the best under cold treatment, while PAB2 and CYP20-2 were the best under heat treatment. Finally, a RT-qPCR assay of LmNAC83 and LmERF60 genes were used to further verify the reliability of selected reference genes above. This work is the first to select and evaluate the stability of reference genes for the normalization of gene expression analysis in L. megaphylla and will provide an important foundation for future genetic studies of this species.
Collapse
Affiliation(s)
- Hongli Liu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Jing Liu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Peng Chen
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Xin Zhang
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Ke Wang
- Zhengzhou Botanical Garden, Zhengzhou 450042, China
| | - Jiuxing Lu
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| | - Yonghua Li
- International Union Laboratory of Landscape Architecture of Henan, College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou 450003, China
| |
Collapse
|
3
|
Zhao G, Wang M, Gan Y, Gong H, Li J, Zheng X, Liu X, Zhao S, Luo J, Wu H. Identification of suitable reference genes for quantitative reverse transcription PCR in Luffa ( Luffa cylindrica). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:737-747. [PMID: 35592479 PMCID: PMC9110621 DOI: 10.1007/s12298-022-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Reverse transcription real-time quantitative PCR is widely used to quantify gene expression. Reference genes are usually used as internal controls to measure the target gene expression level. To date, there is no consensus on the use of systematically validated reference genes in different tissues of Luffa. This study evaluated the expression stability of 11 candidate reference genes in different tissues using five algorithms (BestKeeper, comparative delta-Ct method, GeNorm, NormFinder, and RefFinder). Protein phosphatase 2A was the most stable gene, while alpha Tubulin was the least stable. The relative expression of ethylene-related genes in different tissues was also analyzed to reveal their role in sex determination. This study provides the basis for using suitable reference genes to evaluate targeted gene expression. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01182-8.
Collapse
Affiliation(s)
- Gangjun Zhao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| | - Meng Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| | - Yaqin Gan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| | - Hao Gong
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junxing Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiaoming Zheng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiaoxi Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Siying Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| | - Jianning Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Haibin Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| |
Collapse
|
4
|
de Oliveira LF, Piovezani AR, Ivanov DA, Yoshida L, Segal Floh EI, Kato MJ. Selection and validation of reference genes for measuring gene expression in Piper species at different life stages using RT-qPCR analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:201-212. [PMID: 35007951 DOI: 10.1016/j.plaphy.2021.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The secondary metabolism of Piper species is known to produce a myriad of natural products from various biosynthetic pathways which, represent a rich source of previously uncharacterized chemical compounds. The determination of gene expression profiles in multiple tissue/organ samples could provide valuable clues towards understanding the potential biological functions of chemical changes in these plants. Studies on gene expression by RT-qPCR require particularly careful selection of suitable reference genes as a control for normalization. Here, we provide a study for the identification of reliable reference genes in P. arboreum, P. gaudichaudianum, P. malacophyllum, and P. tuberculatum, at two different life stages: 2-month-old seedlings and adult plants. To do this, annotated sequences were recovered from transcriptome datasets of the above listed Piper spp. These sequences were subjected to expression analysis using RT-qPCR, followed by analysis using the geNorm and NormFinder algorithms. A set of five genes were identified showing stable expression: ACT7 (Actin-7), Cyclophilin (Peptidyl-prolyl cis-trans isomerase), EF1α (Elongation factor 1-alpha), RNABP (RNA-binding protein), and UBCE (Ubiquitin conjugating enzyme). The universality of these genes was then validated using two target genes, ADC (arginine decarboxylase) and SAMDC (S-adenosylmethionine decarboxylase), which are involved in the biosynthesis of polyamines. We showed that normalization genes varied according to Piper spp., and we provide a list of recommended pairs of the best combination for each species. This study provides the first set of suitable candidate genes for gene expression studies in the four Piper spp. assayed, and the findings will facilitate subsequent transcriptomic and functional gene research.
Collapse
Affiliation(s)
- Leandro Francisco de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Amanda Rusiska Piovezani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Dimitre A Ivanov
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, Canada, N6A 3K7
| | - Leonardo Yoshida
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| | - Eny Iochevet Segal Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil.
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| |
Collapse
|
5
|
Liu YN, Liu BY, Ma YC, Yang HL, Liu GQ. Analysis of reference genes stability and histidine kinase expression under cold stress in Cordyceps militaris. PLoS One 2020; 15:e0236898. [PMID: 32785280 PMCID: PMC7423124 DOI: 10.1371/journal.pone.0236898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
The development of fungal fruiting bodies from a hyphal thallus is inducible under low temperature (cold stress). The molecular mechanism has been subject to surprisingly few studies. Analysis of gene expression level has become an important means to study gene function and its regulation mechanism. But identification of reference genes (RGs) stability under cold stress have not been reported in famous medicinal mushroom-forming fungi Cordyceps militaris. Herein, 12 candidate RGs had been systematically validated under cold stress in C. militaris. Three different algorithms, geNorm, NormFinder and BestKeeper were applied to evaluate the expression stability of the RGs. Our results showed that UBC and UBQ were the most stable RGs for cold treatments in short and long periods, respectively. 2 RGs (UBC and PP2A) and 3 RGs (UBQ, TUB and CYP) were the suitable RGs for cold treatments in short and long periods, respectively. Moreover, target genes, two-component-system histidine kinase genes, were selected to validate the most and least stable RGs under cold treatment, which indicated that use of unstable expressed genes as RGs leads to biased results. Our results provide a good starting point for accurate reverse transcriptase quantitative polymerase chain reaction normalization by using UBC and UBQ in C. militaris under cold stress and better support for understanding the mechanism of response to cold stress and fruiting body formation in C. militaris and other mushroom-forming fungi in future research.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Bi-Yang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - You-Chu Ma
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Hai-Long Yang
- College of Environmental & Life Science, Wenzhou University, Wenzhou, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|