1
|
Li Q, Guan C, Zhao Y, Duan X, Yang Z, Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115500. [PMID: 37757624 DOI: 10.1016/j.ecoenv.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Zinc (Zn) is considered as one of the heavy metal pollutants in soil affecting agriculture. Salicylic acid (SA) is an important phytohormone that can mitigate effects against various abiotic stresses in plants, however, its exploration to improve Zn stress tolerance in alfalfa plants is still elusive. Thus, in the present study, exogenous SA treatment was conducted on alfalfa plants under Zn stress. The effects of exogenous SA on the physiological effects of alfalfa plants and the expression levels related genes were studied. This study tested the biomass, relative water content, chlorophyll levels, photosynthetic capacity, proline and soluble sugar contents, detected the activity of antioxidant enzymes (such as peroxidase and superoxide dismutase), glutathione biosynthesis, and endogenous SA levels, and quantified the genes associated with the antioxidant system and glutathione metabolism-mediated Zn stress. The results showed that exogenous SA could elevate the physiological adaptability of alfalfa plants through enhancing photosynthesis, proline and soluble sugar levels, stimulating antioxidant system and glutathione metabolism, and inducing the transcription level of related genes, thereby diminishing oxidative stress, inhibiting excessive Zn accumulation of alfalfa plants, increasing tolerance to Zn stress, and reducing the toxicity of Zn. Collectively, the application of SA alleviates Zn toxicity in alfalfa plants. The findings gave first insights into the regulatory mechanism of the Zn stress tolerance of alfalfa by exogenous SA and this might have positive implications for managing other plants which are suffering Zn stress.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yi Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiaoye Duan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
Escudero-Feliu J, Lima-Cabello E, Rodríguez de Haro E, Morales-Santana S, Jimenez-Lopez JC. Functional Association between Storage Protein Mobilization and Redox Signaling in Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seed Germination and Seedling Development. Genes (Basel) 2023; 14:1889. [PMID: 37895238 PMCID: PMC10606504 DOI: 10.3390/genes14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), β (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-β-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (β and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.
Collapse
Affiliation(s)
- Julia Escudero-Feliu
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Esther Rodríguez de Haro
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Sonia Morales-Santana
- Proteomic Research Unit, Biosanitary Research Institute of Granada (ibs.Granada), 18012 Granada, Spain;
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
3
|
Zhou L, Zhou H, Xiao H, Zhang Z, Xiong Z, Tuo X, Guo H. Elucidation on inhibition and binding mechanism of bovine liver catalase by nifedipine: multi-spectroscopic analysis and computer simulation methods. LUMINESCENCE 2022; 37:1547-1556. [PMID: 35816002 DOI: 10.1002/bio.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Nifedipine (NDP), a dihydropyridine calcium antagonist, is widely used for the treatment of hypertension and angina pectoris. Catalase is a key antioxidant enzyme that is closely relevant to the level of reactive oxygen species (ROS) in vivo. Here, the research explored the effects of NDP on the conformation and catalytic function of bovine liver catalase (BLC) through enzymatic reaction kinetic techniques, multi-spectroscopic analysis and computer simulation method. Kinetic studies clarified that the NDP debased the activity of BLC by non-competitive inhibition mechanism. Based on the data of trials, it was a static quenching mechanism that functioned in the quenching of intrinsic fluorescence of BLC. The binding constant value was (4.486 ± 0.008) × 104 M-1 (298 K) and BLC had one binding site for NDP. Tyr was prone to be exposed more to a hydrophilic environment in wake of a shift in fluorescence value. The binding reaction of BLC to NDP caused the conformational alteration of BLC, which in turn led to increase of the α-helix and decline of β-sheet contents. Furthermore, several amino acids residues interacted with NDP by means of van der Waals forces, whereas Gln397, Asn368, Gln371, Asn384 and Pro377 formed several Hydrogen Bonds with NDP.
Collapse
Affiliation(s)
- Like Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Huilong Xiao
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Ziyun Xiong
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Zhao L, Ai X, Pan F, Zhou N, Zhao L, Cai S, Tang X. Novel peptides with xanthine oxidase inhibitory activity identified from macadamia nuts: integrated in silico and in vitro analysis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ma K, Zhang W, Zhang L, He X, Fan Y, Alam S, Yuan X. Effect of Pyrazosulfuron-Methyl on the Photosynthetic Characteristics and Antioxidant Systems of Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:696169. [PMID: 34421947 PMCID: PMC8375152 DOI: 10.3389/fpls.2021.696169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Foxtail millet (Setaria Italica L.) plays a principal role in food security in Africa and Asia, but it is sensitive to a variety of herbicides. This study was performed to clarify whether pyrazosulfuron-methyl can be used in foxtail millet fields and the effect of pyrazosulfuron-methyl on the photosynthetic performance of foxtail millet. Two foxtail millet varieties (Jingu 21 and Zhangzagu 10) were subjected to five doses (0, 15, 30, 60, and 120 g ai ha-1) of pyrazosulfuron-methyl in pot and field experiments. The plant height, leaf area, stem diameter, photosynthetic pigment contents, gas exchange parameters, chlorophyll fluorescence parameters, antioxidant enzyme activities, and antioxidant contents at 7 and 15 days after pyrazosulfuron-methyl application, and the yield of foxtail millet were measured. The results suggested that pyrazosulfuron-methyl inhibited the growth of foxtail millet and reduced the photosynthetic pigment contents, photosynthetic rate, and photosynthetic system II activity. Similarly, pyrazosulfuron-methyl decreased the antioxidant enzyme activities and antioxidant contents. These results also indicated that the toxicity of pyrazosulfuron-methyl to foxtail millet was decreased gradually with the extension of time after application; however, the foxtail millet yield was still significantly reduced. Therefore, pyrazosulfuron-methyl is not recommended for application in foxtail millet fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
6
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|